Effective Bertini theorem

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Katarzyna Kielanowicz, Beata Osińska-Ulrych, Tomasz Rodak, Adam Różycki, Stanisław Spodzieja
{"title":"Effective Bertini theorem","authors":"Katarzyna Kielanowicz,&nbsp;Beata Osińska-Ulrych,&nbsp;Tomasz Rodak,&nbsp;Adam Różycki,&nbsp;Stanisław Spodzieja","doi":"10.1016/j.bulsci.2025.103648","DOIUrl":null,"url":null,"abstract":"<div><div>The classical Bertini theorem on generic intersection of an algebraic set with hyperplanes says that: <em>Let X be a non-singular closed subvariety of</em> <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span><em>, where</em> <span><math><mi>k</mi></math></span> <em>is an algebraically closed field. Then there exists a hyperplane</em> <span><math><mi>H</mi><mo>⊂</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span><em>, not containing X, and such that the scheme</em> <span><math><mi>H</mi><mo>∩</mo><mi>X</mi></math></span> <em>is regular at every point. Furthermore, the set of hyperplanes with this property forms an open dense subset of the complete linear system</em> <span><math><mo>|</mo><mi>H</mi><mo>|</mo></math></span><em>, considered as a projective space.</em> We will show that one can effectively indicate a finite family of hyperplanes <em>H</em>, at least one of which satisfies the assertion of the Bertini theorem, provided that the dimension and degree of the set <em>X</em> are given.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103648"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000740","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The classical Bertini theorem on generic intersection of an algebraic set with hyperplanes says that: Let X be a non-singular closed subvariety of Pkn, where k is an algebraically closed field. Then there exists a hyperplane HPkn, not containing X, and such that the scheme HX is regular at every point. Furthermore, the set of hyperplanes with this property forms an open dense subset of the complete linear system |H|, considered as a projective space. We will show that one can effectively indicate a finite family of hyperplanes H, at least one of which satisfies the assertion of the Bertini theorem, provided that the dimension and degree of the set X are given.
有效Bertini定理
关于具有超平面的代数集的一般交的经典Bertini定理说:设X是Pkn的非奇异闭子变,其中k是一个代数闭域。那么存在一个不包含X的超平面H∧Pkn,使得方案H∩X在每一点都是正则的。进一步,具有这一性质的超平面集合构成了完整线性系统|H|的开密子集,并将其视为一个射影空间。我们将证明,如果给定集合X的维数和阶数,我们可以有效地表示有限族的超平面H,其中至少有一个满足Bertini定理的断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信