An assortment of properties of silting subcategories of extriangulated categories

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Takahide Adachi , Mayu Tsukamoto
{"title":"An assortment of properties of silting subcategories of extriangulated categories","authors":"Takahide Adachi ,&nbsp;Mayu Tsukamoto","doi":"10.1016/j.bulsci.2025.103647","DOIUrl":null,"url":null,"abstract":"<div><div>Extriangulated categories give a simultaneous generalization of triangulated categories and exact categories. In this paper, we study silting subcategories of an extriangulated category. First, we show that a silting subcategory induces a basis of the Grothendieck group of an extriangulated category. Secondly, we introduce the notion of silting mutation and investigate its basic properties. Thirdly, we explore properties of silting subcategories of the subcategory consisting of objects with finite projective dimension. As an application, we can recover Auslander–Reiten's result which gives a bijection between tilting modules and contravariantly finite resolving subcategories with finite projective dimension.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103647"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000739","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Extriangulated categories give a simultaneous generalization of triangulated categories and exact categories. In this paper, we study silting subcategories of an extriangulated category. First, we show that a silting subcategory induces a basis of the Grothendieck group of an extriangulated category. Secondly, we introduce the notion of silting mutation and investigate its basic properties. Thirdly, we explore properties of silting subcategories of the subcategory consisting of objects with finite projective dimension. As an application, we can recover Auslander–Reiten's result which gives a bijection between tilting modules and contravariantly finite resolving subcategories with finite projective dimension.
外三角分类的泥沙子分类的性质分类
外三角化范畴给出了三角化范畴和精确范畴的同时推广。本文研究了一个外三角化范畴的泥沙子范畴。首先,我们证明了一个淤积子范畴诱导出一个外三角范畴的Grothendieck群的基础。其次,引入了淤积突变的概念,研究了其基本性质。第三,探讨了有限射影维物体组成的泥沙子范畴的性质。作为应用,我们可以恢复Auslander-Reiten的结果,该结果给出了倾斜模与有限投影维的逆变有限解析子范畴之间的双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信