{"title":"Association of IUCN-threatened Indian mangroves: A novel data-driven rule filtering approach for restoration strategy","authors":"Moumita Ghosh , Sourav Mondal , Rohmatul Fajriyah , Kartick Chandra Mondal , Anirban Roy","doi":"10.1016/j.ecoinf.2025.103164","DOIUrl":null,"url":null,"abstract":"<div><div>Restoring biodiversity is crucial for ecological sustainability. This study introduces a novel data-driven rule-filtering framework that adopts domain knowledge of taxonomic distinctness and proposes a new metric, total taxonomic distinctness, to prioritize species selection for targeted restoration efforts. We extract and validate association rules to identify frequently co-occurring species and rank them based on total taxonomic distinctness. This structured approach ensures the selection of ecologically significant species that enhance biodiversity and ecosystem resilience. We apply this three-stage framework to Indian mangrove ecosystems, focusing on four IUCN Red List species: <em>Heritiera fomes</em>, <em>Sonneratia griffithii</em>, <em>Ceriops decandra</em>, and <em>Phoenix paludosa</em>. Our results indicate that taxonomically distinct species tend to co-occur more frequently, enhancing ecosystem resilience. Statistical validation using multiple hypothesis testing ensures the robustness of our findings. To assess the framework’s broader applicability, we extend our analysis to species presence-absence data from sacred groves in the laterite regions of eastern India. The results reinforce our previous findings, demonstrating frequent association patterns among taxonomically distinct species. This study provides actionable insights for ecological restoration, guiding species selection and co-planting strategies. The framework is adaptable across ecosystems, offering a scalable approach to biodiversity conservation.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"89 ","pages":"Article 103164"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001736","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Restoring biodiversity is crucial for ecological sustainability. This study introduces a novel data-driven rule-filtering framework that adopts domain knowledge of taxonomic distinctness and proposes a new metric, total taxonomic distinctness, to prioritize species selection for targeted restoration efforts. We extract and validate association rules to identify frequently co-occurring species and rank them based on total taxonomic distinctness. This structured approach ensures the selection of ecologically significant species that enhance biodiversity and ecosystem resilience. We apply this three-stage framework to Indian mangrove ecosystems, focusing on four IUCN Red List species: Heritiera fomes, Sonneratia griffithii, Ceriops decandra, and Phoenix paludosa. Our results indicate that taxonomically distinct species tend to co-occur more frequently, enhancing ecosystem resilience. Statistical validation using multiple hypothesis testing ensures the robustness of our findings. To assess the framework’s broader applicability, we extend our analysis to species presence-absence data from sacred groves in the laterite regions of eastern India. The results reinforce our previous findings, demonstrating frequent association patterns among taxonomically distinct species. This study provides actionable insights for ecological restoration, guiding species selection and co-planting strategies. The framework is adaptable across ecosystems, offering a scalable approach to biodiversity conservation.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.