Influence of deposition power of PECVD intrinsic a-Si:H buffer layer on n+ poly-Si/SiOx/c-Si passivating contacts

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Zhirong Yao , Wanyu Si , Yingwen Zhao , Paul Procel Moya , Engin Özkol , Guangtao Yang , Prasad Gonugunta , Prasaanth Ravi Anusuyadevi , Peyman Taheri , Olindo Isabella
{"title":"Influence of deposition power of PECVD intrinsic a-Si:H buffer layer on n+ poly-Si/SiOx/c-Si passivating contacts","authors":"Zhirong Yao ,&nbsp;Wanyu Si ,&nbsp;Yingwen Zhao ,&nbsp;Paul Procel Moya ,&nbsp;Engin Özkol ,&nbsp;Guangtao Yang ,&nbsp;Prasad Gonugunta ,&nbsp;Prasaanth Ravi Anusuyadevi ,&nbsp;Peyman Taheri ,&nbsp;Olindo Isabella","doi":"10.1016/j.solmat.2025.113709","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing the deposition parameters in the fabrication of passivating contacts for crystalline silicon solar cells is critical for improving efficiency. This study explored the influence of varying RF power of Plasma-Enhanced Chemical Vapor Deposition (PECVD) on the quality of hydrogenated intrinsic amorphous silicon (&lt;i&gt; a-Si:H) films. The aim is to manufacture in-situ phosphorous-doped poly-Si/SiO<sub><em>x</em></sub>/c-Si passivating contacts with &lt;i&gt; a-Si:H as buffer layer between the tunnelling oxide and the n-type poly-Si. The microstructure factor of our intrinsic layers increases from 0.176 to 0.804, that is from higher to lower film density, as the RF power increases from 5 W to 55 W. Analysis using X-ray Photoelectron Spectroscopy and Optical Microscopy indicates that the Si content in SiO<sub><em>x</em></sub> is correlated with the formation of pinholes. Our detailed analysis showed that varying the RF power when depositing &lt;i&gt; a-Si:H contacting layer is crucial in altering both the Si<sup>4+</sup> content in SiO<sub><em>x</em></sub> and the pinhole density, due to the interplay between the plasma etching and the buffering effects during of the &lt;i&gt; a-Si:H layer growth. Notably, the sample processed with 25 W exhibited the maximum pinhole density, the lowest Si<sup>4+</sup> content in SiO<sub><em>x</em></sub> and the deepest phosphorus in-diffusion, potentially yielding superior results in passivation quality and contact resistivity under optimized PECVD conditions.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113709"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003101","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing the deposition parameters in the fabrication of passivating contacts for crystalline silicon solar cells is critical for improving efficiency. This study explored the influence of varying RF power of Plasma-Enhanced Chemical Vapor Deposition (PECVD) on the quality of hydrogenated intrinsic amorphous silicon (<i> a-Si:H) films. The aim is to manufacture in-situ phosphorous-doped poly-Si/SiOx/c-Si passivating contacts with <i> a-Si:H as buffer layer between the tunnelling oxide and the n-type poly-Si. The microstructure factor of our intrinsic layers increases from 0.176 to 0.804, that is from higher to lower film density, as the RF power increases from 5 W to 55 W. Analysis using X-ray Photoelectron Spectroscopy and Optical Microscopy indicates that the Si content in SiOx is correlated with the formation of pinholes. Our detailed analysis showed that varying the RF power when depositing <i> a-Si:H contacting layer is crucial in altering both the Si4+ content in SiOx and the pinhole density, due to the interplay between the plasma etching and the buffering effects during of the <i> a-Si:H layer growth. Notably, the sample processed with 25 W exhibited the maximum pinhole density, the lowest Si4+ content in SiOx and the deepest phosphorus in-diffusion, potentially yielding superior results in passivation quality and contact resistivity under optimized PECVD conditions.
PECVD本征a-Si:H缓冲层沉积功率对n+多晶硅/SiOx/c-Si钝化触点的影响
优化晶体硅太阳电池钝化触点的工艺参数是提高效率的关键。本研究探讨了等离子体增强化学气相沉积(PECVD)射频功率的变化对氢化本征非晶硅(<i>;晶硅:H)的电影。目的是制备原位掺磷多晶硅/SiOx/c-Si钝化触点。a-Si:H作为隧道氧化物与n型多晶硅之间的缓冲层。当射频功率从5w增加到55w时,本征层的微观结构因子从0.176增加到0.804,即膜密度从高到低。x射线光电子能谱和光学显微镜分析表明,SiOx中Si含量与针孔的形成有关。我们的详细分析表明,改变射频功率时,沉积<;a-Si:H接触层是改变SiOx中Si4+含量和针孔密度的关键,这是由于等离子体蚀刻和缓冲效应之间的相互作用。a-Si:H层生长。值得注意的是,在25 W条件下处理的样品具有最大的针孔密度、最低的Si4+含量和最深的磷扩散,在优化的PECVD条件下可能产生更好的钝化质量和接触电阻率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信