{"title":"Perturbation limiting behaviors of ground states to the Kirchhoff equation with combined power-type nonlinearities","authors":"Deke Li","doi":"10.1016/j.jmaa.2025.129677","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the Kirchhoff-type equation with combined power-type nonlinearities:<span><span><span><math><mrow><mtable><mtr><mtd><mo>−</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>−</mo><mi>ε</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> are constants, <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>N</mi><mo>≤</mo><mn>3</mn></math></span> and <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. We mainly focus on the existence and perturbation limit behaviors of ground states <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> is radially symmetric-decreasing and <span><math><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><mi>ρ</mi></math></span>. Firstly, we prove the existence and nonexistence of ground states by using the concentration-compactness principle. Secondly, we characterize the perturbation limit behaviors of ground states <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> as <span><math><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> and find that the blow-up phenomenon happens for <span><math><mn>2</mn><mo>+</mo><mn>8</mn><mo>/</mo><mi>N</mi><mo>≤</mo><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>ρ</mi><mo>></mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> in the sense that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mo></mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Moreover, we obtain two different blow-up profiles corresponding to two limit equations. In particular, for mass super-critical <span><math><mo>(</mo><mn>2</mn><mo>+</mo><mn>8</mn><mo>/</mo><mi>N</mi><mo><</mo><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, the limit profiles is given by the nonlinear Schrödinger Thomas-Fermi minimizer <span><math><msqrt><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mn>1</mn></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></msqrt><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>Ω</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denotes the characteristic function for the Borel set <span><math><mi>Ω</mi><mo>=</mo><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mroot><mrow><mfrac><mrow><mi>N</mi><mi>ρ</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ω</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></mfrac></mrow><mrow><mi>N</mi></mrow></mroot><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>q</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn><mo>/</mo><mo>(</mo><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></msup></math></span>. Finally, we obtain the sharp blow-up rate for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> that <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>∼</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></msup></math></span> as <span><math><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> with <span><math><mn>2</mn><mo>+</mo><mn>8</mn><mo>/</mo><mi>N</mi><mo>≤</mo><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>ρ</mi><mo>></mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129677"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004585","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the Kirchhoff-type equation with combined power-type nonlinearities: where , , are constants, , and . We mainly focus on the existence and perturbation limit behaviors of ground states , where is radially symmetric-decreasing and . Firstly, we prove the existence and nonexistence of ground states by using the concentration-compactness principle. Secondly, we characterize the perturbation limit behaviors of ground states as and find that the blow-up phenomenon happens for and in the sense that . Moreover, we obtain two different blow-up profiles corresponding to two limit equations. In particular, for mass super-critical , the limit profiles is given by the nonlinear Schrödinger Thomas-Fermi minimizer , where denotes the characteristic function for the Borel set and . Finally, we obtain the sharp blow-up rate for that as with and .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.