Perturbation limiting behaviors of ground states to the Kirchhoff equation with combined power-type nonlinearities

IF 1.2 3区 数学 Q1 MATHEMATICS
Deke Li
{"title":"Perturbation limiting behaviors of ground states to the Kirchhoff equation with combined power-type nonlinearities","authors":"Deke Li","doi":"10.1016/j.jmaa.2025.129677","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the Kirchhoff-type equation with combined power-type nonlinearities:<span><span><span><math><mrow><mtable><mtr><mtd><mo>−</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>−</mo><mi>ε</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> are constants, <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>N</mi><mo>≤</mo><mn>3</mn></math></span> and <span><math><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. We mainly focus on the existence and perturbation limit behaviors of ground states <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> is radially symmetric-decreasing and <span><math><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><mi>ρ</mi></math></span>. Firstly, we prove the existence and nonexistence of ground states by using the concentration-compactness principle. Secondly, we characterize the perturbation limit behaviors of ground states <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> as <span><math><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> and find that the blow-up phenomenon happens for <span><math><mn>2</mn><mo>+</mo><mn>8</mn><mo>/</mo><mi>N</mi><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>ρ</mi><mo>&gt;</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> in the sense that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mo>⁡</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Moreover, we obtain two different blow-up profiles corresponding to two limit equations. In particular, for mass super-critical <span><math><mo>(</mo><mn>2</mn><mo>+</mo><mn>8</mn><mo>/</mo><mi>N</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, the limit profiles is given by the nonlinear Schrödinger Thomas-Fermi minimizer <span><math><msqrt><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mn>1</mn></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></msqrt><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>Ω</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denotes the characteristic function for the Borel set <span><math><mi>Ω</mi><mo>=</mo><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mroot><mrow><mfrac><mrow><mi>N</mi><mi>ρ</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ω</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></mfrac></mrow><mrow><mi>N</mi></mrow></mroot><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>q</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn><mo>/</mo><mo>(</mo><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></msup></math></span>. Finally, we obtain the sharp blow-up rate for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> that <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi><mo>,</mo><mi>ρ</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>∼</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></msup></math></span> as <span><math><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> with <span><math><mn>2</mn><mo>+</mo><mn>8</mn><mo>/</mo><mi>N</mi><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>ρ</mi><mo>&gt;</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129677"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004585","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the Kirchhoff-type equation with combined power-type nonlinearities:(a+bRN|u|2dx)Δu=λu+|u|p1uε|u|q1uin RN, where a>0, b>0, ε>0 are constants, λR, 1N3 and 2<p<q<2. We mainly focus on the existence and perturbation limit behaviors of ground states uε,ρ, where uε,ρ is radially symmetric-decreasing and RN|uε,ρ|2dx=ρ. Firstly, we prove the existence and nonexistence of ground states by using the concentration-compactness principle. Secondly, we characterize the perturbation limit behaviors of ground states uε,ρ as ε0+ and find that the blow-up phenomenon happens for 2+8/Np<q<2 and ρ>ρc in the sense that limε0+RN|uε,ρ|2dx+. Moreover, we obtain two different blow-up profiles corresponding to two limit equations. In particular, for mass super-critical (2+8/N<p<q<2), the limit profiles is given by the nonlinear Schrödinger Thomas-Fermi minimizer ρ1Ω(x), where 1Ω(x) denotes the characteristic function for the Borel set Ω=B(0,NρρωNN) and ρ=(q(p2)p(q2))2/(qp). Finally, we obtain the sharp blow-up rate for uε,ρ that uε,ρLε1/(qp) as ε0+ with 2+8/Np<q<2 and ρ>ρc.
组合幂型非线性Kirchhoff方程基态的微扰极限行为
本文考虑具有组合幂型非线性的kirchhoff型方程:−(a+b∫RN|∇u|2dx)Δu=λu+|u|p−1u−ε|u|q−1uin RN,其中,a>0, b>0, ε>;0为常数,λ∈R, 1≤N≤3,2<p<q<2。我们主要关注基态uε,ρ的存在性和摄动极限行为,其中uε,ρ是径向对称递减的,并且∫RN|uε,ρ|2dx=ρ。首先,利用浓度紧致原理证明了基态的存在性和不存在性。其次,刻画了基态uε,ρ为ε→0+时的摄动极限行为,发现当2+8/N≤p<;q<;2和ρ>;ρc时,λ ε→0+∫RN|∇uε,ρ|2dx→+∞时,会发生爆破现象。此外,我们还得到了对应于两个极限方程的两个不同的爆破曲线。特别地,对于质量超临界(2+8/N<p<q<2),极限曲线由非线性的Schrödinger Thomas-Fermi最小化器ρ 1Ω(x)给出,其中1Ω(x)表示Borel集合Ω=B(0, nρ Ω nn)和ρ =(q(p−2)p(q−2))2/(q−p)的特征函数。最后,我们得到了uε,ρ的急剧膨胀率,即‖uε,ρ‖L∞~ ε−1/(q−p)为ε→0+,2+8/N≤p<q<;2和ρ>;ρc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信