{"title":"Decay estimates for massive Dirac equation in a constant magnetic field","authors":"Zhiqing Yin","doi":"10.1016/j.jde.2025.113420","DOIUrl":null,"url":null,"abstract":"<div><div>We study the decay and Strichartz estimates for the massive Dirac Hamiltonian in a constant magnetic fields in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>×</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>i</mi><mi>σ</mi><mo>⋅</mo><mo>(</mo><mi>∇</mi><mo>−</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>+</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>m</mi></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>0</mn></math></span> being the mass and <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> being the Dirac matrices and the potential <span><math><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mo>−</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>. In particular, we show the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> type micro-localized decay estimates, for any finite time <span><math><mi>T</mi><mo>></mo><mn>0</mn></math></span>, there exists a constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> such that<span><span><span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>t</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup><mi>φ</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>j</mi></mrow></msup><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>|</mo><mo>)</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mo>[</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>T</mi></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>j</mi></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>j</mi></mrow></msup><mo>|</mo><mi>t</mi><mo>|</mo><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msub><mrow><mo>‖</mo><mi>φ</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>j</mi></mrow></msup><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>|</mo><mo>)</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mo>[</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>,</mo><mspace></mspace><mo>|</mo><mi>t</mi><mo>|</mo><mo>≤</mo><mi>T</mi><mo>,</mo></math></span></span></span> and we further prove the local-in-time Strichartz estimates for the Dirac equations with this unbounded potential.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113420"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004474","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the decay and Strichartz estimates for the massive Dirac Hamiltonian in a constant magnetic fields in : where with being the mass and being the Dirac matrices and the potential . In particular, we show the type micro-localized decay estimates, for any finite time , there exists a constant such that and we further prove the local-in-time Strichartz estimates for the Dirac equations with this unbounded potential.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics