Decay estimates for massive Dirac equation in a constant magnetic field

IF 2.4 2区 数学 Q1 MATHEMATICS
Zhiqing Yin
{"title":"Decay estimates for massive Dirac equation in a constant magnetic field","authors":"Zhiqing Yin","doi":"10.1016/j.jde.2025.113420","DOIUrl":null,"url":null,"abstract":"<div><div>We study the decay and Strichartz estimates for the massive Dirac Hamiltonian in a constant magnetic fields in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>×</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>i</mi><mi>σ</mi><mo>⋅</mo><mo>(</mo><mi>∇</mi><mo>−</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>+</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>m</mi></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>0</mn></math></span> being the mass and <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> being the Dirac matrices and the potential <span><math><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mo>−</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>. In particular, we show the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> type micro-localized decay estimates, for any finite time <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span>, there exists a constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> such that<span><span><span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>t</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup><mi>φ</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>j</mi></mrow></msup><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>|</mo><mo>)</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mo>[</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>T</mi></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>j</mi></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>j</mi></mrow></msup><mo>|</mo><mi>t</mi><mo>|</mo><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msub><mrow><mo>‖</mo><mi>φ</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>j</mi></mrow></msup><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>|</mo><mo>)</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mo>[</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>,</mo><mspace></mspace><mo>|</mo><mi>t</mi><mo>|</mo><mo>≤</mo><mi>T</mi><mo>,</mo></math></span></span></span> and we further prove the local-in-time Strichartz estimates for the Dirac equations with this unbounded potential.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113420"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004474","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the decay and Strichartz estimates for the massive Dirac Hamiltonian in a constant magnetic fields in Rt×Rx2:{itu(t,x)DAu(t,x)=0,u(0,x)=f, where DA=iσ(iA(x))+σ3m with m0 being the mass and σi being the Dirac matrices and the potential A(x)=B02(x2,x1),B0>0. In particular, we show the L1(R2)L(R2) type micro-localized decay estimates, for any finite time T>0, there exists a constant CT such thateitDAφ(2j|DA|)f(x)[L(R2)]2CT22j(1+2j|t|)12φ(2j|DA|)f[L1(R2)]2,|t|T, and we further prove the local-in-time Strichartz estimates for the Dirac equations with this unbounded potential.
恒定磁场下大质量狄拉克方程的衰减估计
我们研究了恒定磁场中质量Dirac哈密顿量在Rt×Rx2中的衰减和Strichartz估计:{i∂tu(t,x) - DAu(t,x)=0,u(0,x)=f,其中DA= - iσ⋅(∇- iA(x))+σ3m,其中m≥0为质量,σi为Dirac矩阵,势a (x)=B02(- x2,x1),B0>0。特别地,我们证明了L1(R2)→L∞(R2)型微局部衰减估计,对于任意有限时间T>;0,存在一个常数CT使得‖eitDAφ(2−j|DA|)f(x)‖[L∞(R2)]2≤CT22j(1+2j|t|)−12‖φ(2−j|DA|)f‖[L1(R2)]2,|t|≤t,并进一步证明了具有此无界势的Dirac方程的局域时间Strichartz估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信