Adama Ouedraogo , Rodrigue Noaga Sawadogo , Boureima Dianda , Mahamadi Savadogo , Boubacar Soro , Thierry Sikoudouin Maurice Ky , Dieudonné Joseph Bathiebo , Sié Kam
{"title":"Resistivity of crystalline silicon photovoltaic cell to the electromagnetic field effects","authors":"Adama Ouedraogo , Rodrigue Noaga Sawadogo , Boureima Dianda , Mahamadi Savadogo , Boubacar Soro , Thierry Sikoudouin Maurice Ky , Dieudonné Joseph Bathiebo , Sié Kam","doi":"10.1016/j.solcom.2025.100122","DOIUrl":null,"url":null,"abstract":"<div><div>This present paper studies a crystalline silicon PV cell’s resistance to electromagnetic field (EMF) effects. This study identifies an optimal doping range for silicon PV cells, enhancing their resistance to EMF damage. After solving key equations, we analyzed the cell’s electrical parameters and energy processes. The current slightly drops as the dopant level (<span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>) increases from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>17</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>. Meanwhile, the voltage rises sharply. Beyond <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>17</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, the current plummets, while the voltage sees a slight increase. This behavior indicates the best EMF resistance occurs at <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>17</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, aligning with the peak electric power at this doping level. The thermalization mechanism is not affected by the EMF and doping rate. However, the analyses of the thermodynamic process behavior and fill factor on the one hand. Conversely, the absorption mechanism reveals peak resistance to the EMF at <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>17</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>. Thus, doping with boron enhances the electromagnetic resistivity of crystalline silicon PV cells. This also improves control over Light-Induced Degradation (LID).</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"14 ","pages":"Article 100122"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940025000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This present paper studies a crystalline silicon PV cell’s resistance to electromagnetic field (EMF) effects. This study identifies an optimal doping range for silicon PV cells, enhancing their resistance to EMF damage. After solving key equations, we analyzed the cell’s electrical parameters and energy processes. The current slightly drops as the dopant level () increases from to . Meanwhile, the voltage rises sharply. Beyond , the current plummets, while the voltage sees a slight increase. This behavior indicates the best EMF resistance occurs at , aligning with the peak electric power at this doping level. The thermalization mechanism is not affected by the EMF and doping rate. However, the analyses of the thermodynamic process behavior and fill factor on the one hand. Conversely, the absorption mechanism reveals peak resistance to the EMF at . Thus, doping with boron enhances the electromagnetic resistivity of crystalline silicon PV cells. This also improves control over Light-Induced Degradation (LID).