{"title":"Scaling between areas of electrolyzer electrodes and solar modules achieving over 15 % solar to hydrogen conversion efficiency: Silicon and CIGS","authors":"Oleksii Omelianovych , Ngoc-Anh Nguyen , Liudmila Larina , Inchan Hwang , Kihwan Kim , Byeonggwan Kim , Donghyeop Shin , Ho-Suk Choi","doi":"10.1016/j.renene.2025.123454","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to maximize the efficiency of solar-to-hydrogen generation systems by optimizing the relative areas of the electrodes and solar modules. The core objective is to identify the optimal balance between these components to achieve the highest energy conversion efficiency. We conducted a series of experiments using lab-scale silicon and copper indium gallium selenide solar modules, along with platinum on carbon and ruthenium dioxide-based electrocatalyst electrodes. By increasing the area of the water-splitting electrodes while decreasing the solar module area, we achieved solar-to-hydrogen conversion efficiencies of 12.30 % for the silicon module and 15.34 % for the copper indium gallium selenide module. Our findings indicate that the optimal ratio between the electrode and solar module areas depends on the type of solar module. To better understand this relationship, we analyzed the normalized current-voltage characteristics of the solar modules, which allowed us to evaluate the system's potential to reach the maximum theoretical efficiency. Additionally, we introduce the concept of coupling effectiveness to quantify how efficiently the integrated system utilizes captured solar energy. In this study, we achieved a coupling effectiveness of 85.7 %, which is the highest value reported to date for similar systems.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"251 ","pages":"Article 123454"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125011164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to maximize the efficiency of solar-to-hydrogen generation systems by optimizing the relative areas of the electrodes and solar modules. The core objective is to identify the optimal balance between these components to achieve the highest energy conversion efficiency. We conducted a series of experiments using lab-scale silicon and copper indium gallium selenide solar modules, along with platinum on carbon and ruthenium dioxide-based electrocatalyst electrodes. By increasing the area of the water-splitting electrodes while decreasing the solar module area, we achieved solar-to-hydrogen conversion efficiencies of 12.30 % for the silicon module and 15.34 % for the copper indium gallium selenide module. Our findings indicate that the optimal ratio between the electrode and solar module areas depends on the type of solar module. To better understand this relationship, we analyzed the normalized current-voltage characteristics of the solar modules, which allowed us to evaluate the system's potential to reach the maximum theoretical efficiency. Additionally, we introduce the concept of coupling effectiveness to quantify how efficiently the integrated system utilizes captured solar energy. In this study, we achieved a coupling effectiveness of 85.7 %, which is the highest value reported to date for similar systems.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.