{"title":"Vertex degree sums for perfect matchings in 3-uniform hypergraphs","authors":"Yan Wang , Yi Zhang","doi":"10.1016/j.disc.2025.114564","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>n</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mspace></mspace><mtext>mod </mtext><mn>3</mn><mspace></mspace><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>/</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> be the 3-graph of order <em>n</em>, whose vertex set is partitioned into two sets <em>S</em> and <em>T</em> of size <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>+</mo><mn>1</mn></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, respectively, and whose edge set consists of all triples with at least 2 vertices in <em>T</em>. Suppose that <em>n</em> is sufficiently large and <em>H</em> is a 3-uniform hypergraph of order <em>n</em> with no isolated vertex. Zhang and Lu [Discrete Math. 341 (2018), 748–758] conjectured that if <span><math><mi>deg</mi><mo></mo><mo>(</mo><mi>u</mi><mo>)</mo><mo>+</mo><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>></mo><mn>2</mn><mo>(</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>n</mi><mo>/</mo><mn>3</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>)</mo></math></span> for any two vertices <em>u</em> and <em>v</em> that are contained in some edge of <em>H</em>, then <em>H</em> contains a perfect matching or <em>H</em> is a subgraph of <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>/</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. We construct a counter-example to the conjecture. Furthermore, for all <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>∈</mo><mn>3</mn><mi>Z</mi></math></span> sufficiently large, we prove that if <span><math><mi>deg</mi><mo></mo><mo>(</mo><mi>u</mi><mo>)</mo><mo>+</mo><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>></mo><mo>(</mo><mn>3</mn><mo>/</mo><mn>5</mn><mo>+</mo><mi>γ</mi><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for any two vertices <em>u</em> and <em>v</em> that are contained in some edge of <em>H</em>, then <em>H</em> contains a perfect matching or <em>H</em> is a subgraph of <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>/</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. This implies a result of Zhang, Zhao and Lu [Electron. J. Combin. 25 (3), 2018].</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114564"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001724","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be the 3-graph of order n, whose vertex set is partitioned into two sets S and T of size and , respectively, and whose edge set consists of all triples with at least 2 vertices in T. Suppose that n is sufficiently large and H is a 3-uniform hypergraph of order n with no isolated vertex. Zhang and Lu [Discrete Math. 341 (2018), 748–758] conjectured that if for any two vertices u and v that are contained in some edge of H, then H contains a perfect matching or H is a subgraph of . We construct a counter-example to the conjecture. Furthermore, for all and sufficiently large, we prove that if for any two vertices u and v that are contained in some edge of H, then H contains a perfect matching or H is a subgraph of . This implies a result of Zhang, Zhao and Lu [Electron. J. Combin. 25 (3), 2018].
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.