{"title":"Amifostine-loaded Prussian blue nanoparticles for simultaneous efficient radioprotection and deep decorporation of radiocesium","authors":"Boyan Wang, Yuchen Liu, Chengqi Li, Meiyun Xu, Daoben Hua","doi":"10.1016/j.colsurfb.2025.114788","DOIUrl":null,"url":null,"abstract":"<div><div>Radiocesium is highly water-soluble and easily accumulates in agricultural products and seafood. Ingestion of radiocesium results in internal irradiation, significantly increasing the risk of tissue and organ damage as well as carcinogenesis. In this paper, we develop a strategy for simultaneous radioprotection and decorporation of radiocesium by amifostine-loaded Prussian blue (Am@PB) nanoparticles. The nanoparticles are prepared through chemical coordination between amine/phosphate groups of amifostine and Fe (II)/Fe (III) sites of Prussian blue (PB). Am@PB nanoparticles mitigate radiation-induced damage to peripheral blood cells and organs, improving the survival rate of irradiated mice. This is due to the synergistic effects of the nano-enzymatic activity of PB component and the high reducibility of sulfhydryl groups generated through amifostine hydrolysis by alkaline phosphatase. Furthermore, the deep excretion of cesium is achieved <em>via</em> feces along the metabolic pathway of Am@PB, leading to an enhanced decorporation efficiency of over 50 % compared to orally administered commercial PB. This work provides a design strategy for efficient radioprotective decorporation agents with potential applications in the treatment of internal radiocesium contamination.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"254 ","pages":"Article 114788"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002954","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Radiocesium is highly water-soluble and easily accumulates in agricultural products and seafood. Ingestion of radiocesium results in internal irradiation, significantly increasing the risk of tissue and organ damage as well as carcinogenesis. In this paper, we develop a strategy for simultaneous radioprotection and decorporation of radiocesium by amifostine-loaded Prussian blue (Am@PB) nanoparticles. The nanoparticles are prepared through chemical coordination between amine/phosphate groups of amifostine and Fe (II)/Fe (III) sites of Prussian blue (PB). Am@PB nanoparticles mitigate radiation-induced damage to peripheral blood cells and organs, improving the survival rate of irradiated mice. This is due to the synergistic effects of the nano-enzymatic activity of PB component and the high reducibility of sulfhydryl groups generated through amifostine hydrolysis by alkaline phosphatase. Furthermore, the deep excretion of cesium is achieved via feces along the metabolic pathway of Am@PB, leading to an enhanced decorporation efficiency of over 50 % compared to orally administered commercial PB. This work provides a design strategy for efficient radioprotective decorporation agents with potential applications in the treatment of internal radiocesium contamination.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.