Assessing pseudocapacitive and OER-HER electrocatalytic potential of bimetallic Copper-Nickel/Graphene oxide nanocomposite

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kedar Sahoo , Deepak Kumar , Vishal K. Kushwaha , Ajinkya Kotkar , Arindam Indra , Shirish H. Sonawane , Suddhasatwa Basu
{"title":"Assessing pseudocapacitive and OER-HER electrocatalytic potential of bimetallic Copper-Nickel/Graphene oxide nanocomposite","authors":"Kedar Sahoo ,&nbsp;Deepak Kumar ,&nbsp;Vishal K. Kushwaha ,&nbsp;Ajinkya Kotkar ,&nbsp;Arindam Indra ,&nbsp;Shirish H. Sonawane ,&nbsp;Suddhasatwa Basu","doi":"10.1016/j.mseb.2025.118425","DOIUrl":null,"url":null,"abstract":"<div><div>Copper-nickel oxide/GO (CNO/GO) nanocomposite was synthesized via a low-temperature thermal reduction technique with crystallographic phase matching with an off-stoichiometric type Cu<sub>0.05</sub>Ni<sub>0.95</sub>O/GO structure. Three-electrode-based electrochemical experiments suggest that the prepared CNO/GO nanocomposite can store energy via the pseudocapacitive mechanism. The charge storage efficacy is also reflected in the high-power density value (∼267 W/kg) achieved at a current density of 1 A/g compared to earlier reported nickel oxide-based composites. The practical performance of the CNO/GO nanocomposite can be corroborated by the fact that in a symmetric coin cell device, it results in a specific capacity of ∼37F/g @ 1A/g and retains its ∼84 % specific capacity after 8000 cycles. The flexibility of using CNO/GO nanocomposite as an exceptional electrocatalytic material can be recognized from the smaller overpotential (η) values, e.g., 340 mV and 359 mV for OER and HER, respectively, in conjunction with chronoamperometric stability retained over 24 h. All these multiple electrochemical attributes establish the potential of using CNO/GO nanocomposite in energy storage and conversion.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"320 ","pages":"Article 118425"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725004490","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper-nickel oxide/GO (CNO/GO) nanocomposite was synthesized via a low-temperature thermal reduction technique with crystallographic phase matching with an off-stoichiometric type Cu0.05Ni0.95O/GO structure. Three-electrode-based electrochemical experiments suggest that the prepared CNO/GO nanocomposite can store energy via the pseudocapacitive mechanism. The charge storage efficacy is also reflected in the high-power density value (∼267 W/kg) achieved at a current density of 1 A/g compared to earlier reported nickel oxide-based composites. The practical performance of the CNO/GO nanocomposite can be corroborated by the fact that in a symmetric coin cell device, it results in a specific capacity of ∼37F/g @ 1A/g and retains its ∼84 % specific capacity after 8000 cycles. The flexibility of using CNO/GO nanocomposite as an exceptional electrocatalytic material can be recognized from the smaller overpotential (η) values, e.g., 340 mV and 359 mV for OER and HER, respectively, in conjunction with chronoamperometric stability retained over 24 h. All these multiple electrochemical attributes establish the potential of using CNO/GO nanocomposite in energy storage and conversion.
评估双金属铜镍/氧化石墨烯纳米复合材料的赝电容和超her电催化电位
采用低温热还原技术合成了具有非化学计量型Cu0.05Ni0.95O/GO结构的CNO/GO纳米复合材料。基于三电极的电化学实验表明,制备的CNO/GO纳米复合材料可以通过赝电容机制储存能量。与先前报道的氧化镍基复合材料相比,电荷存储效率还反映在电流密度为1 a /g时实现的高功率密度值(~ 267 W/kg)上。CNO/GO纳米复合材料的实际性能可以通过以下事实得到证实:在对称硬币电池器件中,它的比容量为~ 37F/g @ 1A/g,并在8000次循环后保持其~ 84%的比容量。使用CNO/GO纳米复合材料作为一种特殊的电催化材料的灵活性可以从较小的过电位(η)值(例如,OER和HER的过电位分别为340 mV和359 mV)以及在24小时内保持的时安培稳定性中识别出来。所有这些多重电化学属性都确定了使用CNO/GO纳米复合材料在储能和转换方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信