{"title":"Concentration phenomena of positive solutions to weakly coupled Schrödinger systems with large exponents in dimension two","authors":"Zhijie Chen , Hanqing Zhao","doi":"10.1016/j.jde.2025.113434","DOIUrl":null,"url":null,"abstract":"<div><div>We study the weakly coupled nonlinear Schrödinger system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msubsup><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>+</mo><mi>β</mi><msubsup><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><msubsup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><mtext> in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msubsup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>+</mo><mi>β</mi><msubsup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><msubsup><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><mtext> in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn><mspace></mspace><mtext>in </mtext><mspace></mspace><mi>Ω</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mtext> on </mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>p</mi><mo>></mo><mn>1</mn><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span> and Ω is a smooth bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We prove the a priori estimate for positive solutions. Moreover, under the natural condition that holds automatically for all positive solutions in star-shaped domains<span><span><span><math><mrow><mi>p</mi><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mi>C</mi><mo>,</mo></mrow></math></span></span></span> we give a complete description of the concentration phenomena of positive solutions <span><math><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub><mo>)</mo></math></span> as <span><math><mi>p</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>, including the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-norm quantization <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>p</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>→</mo><msqrt><mrow><mi>e</mi></mrow></msqrt></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>, the energy quantization <span><math><mi>p</mi><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>→</mo><mn>8</mn><mi>n</mi><mi>π</mi><mi>e</mi></math></span> with <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></math></span>, and so on. In particular, we show that the “local mass” contributed by each concentration point must be one of <span><math><mo>{</mo><mo>(</mo><mn>8</mn><mi>π</mi><mo>,</mo><mn>8</mn><mi>π</mi><mo>)</mo><mo>,</mo><mo>(</mo><mn>8</mn><mi>π</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mi>π</mi><mo>)</mo><mo>}</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113434"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004619","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the weakly coupled nonlinear Schrödinger system where and Ω is a smooth bounded domain in . We prove the a priori estimate for positive solutions. Moreover, under the natural condition that holds automatically for all positive solutions in star-shaped domains we give a complete description of the concentration phenomena of positive solutions as , including the -norm quantization for , the energy quantization with , and so on. In particular, we show that the “local mass” contributed by each concentration point must be one of .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics