Concentration phenomena of positive solutions to weakly coupled Schrödinger systems with large exponents in dimension two

IF 2.4 2区 数学 Q1 MATHEMATICS
Zhijie Chen , Hanqing Zhao
{"title":"Concentration phenomena of positive solutions to weakly coupled Schrödinger systems with large exponents in dimension two","authors":"Zhijie Chen ,&nbsp;Hanqing Zhao","doi":"10.1016/j.jde.2025.113434","DOIUrl":null,"url":null,"abstract":"<div><div>We study the weakly coupled nonlinear Schrödinger system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msubsup><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>+</mo><mi>β</mi><msubsup><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><msubsup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><mtext> in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msubsup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>+</mo><mi>β</mi><msubsup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><msubsup><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow><mrow><mfrac><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><mtext> in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn><mspace></mspace><mtext>in </mtext><mspace></mspace><mi>Ω</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mtext> on </mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> and Ω is a smooth bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We prove the a priori estimate for positive solutions. Moreover, under the natural condition that holds automatically for all positive solutions in star-shaped domains<span><span><span><math><mrow><mi>p</mi><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mi>C</mi><mo>,</mo></mrow></math></span></span></span> we give a complete description of the concentration phenomena of positive solutions <span><math><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub><mo>)</mo></math></span> as <span><math><mi>p</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>, including the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-norm quantization <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>p</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>→</mo><msqrt><mrow><mi>e</mi></mrow></msqrt></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>, the energy quantization <span><math><mi>p</mi><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>→</mo><mn>8</mn><mi>n</mi><mi>π</mi><mi>e</mi></math></span> with <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></math></span>, and so on. In particular, we show that the “local mass” contributed by each concentration point must be one of <span><math><mo>{</mo><mo>(</mo><mn>8</mn><mi>π</mi><mo>,</mo><mn>8</mn><mi>π</mi><mo>)</mo><mo>,</mo><mo>(</mo><mn>8</mn><mi>π</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mi>π</mi><mo>)</mo><mo>}</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113434"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004619","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the weakly coupled nonlinear Schrödinger system{Δu1=μ1u1p+βu1p12u2p+12 in Ω,Δu2=μ2u2p+βu2p12u1p+12 in Ω,u1,u2>0in Ω;u1=u2=0 on Ω, where p>1,μ1,μ2,β>0 and Ω is a smooth bounded domain in R2. We prove the a priori estimate for positive solutions. Moreover, under the natural condition that holds automatically for all positive solutions in star-shaped domainspΩ|u1,p|2+|u2,p|2dxC, we give a complete description of the concentration phenomena of positive solutions (u1,p,u2,p) as p+, including the L-norm quantization uk,pL(Ω)e for k=1,2, the energy quantization pΩ|u1,p|2+|u2,p|2dx8nπe with nN2, and so on. In particular, we show that the “local mass” contributed by each concentration point must be one of {(8π,8π),(8π,0),(0,8π)}.
二维大指数弱耦合Schrödinger系统正解的浓度现象
我们研究了弱耦合非线性Schrödinger系统{−Δu1=μ1u1p+βu1p−12u2p+12在Ω中,−Δu2=μ2u2p+βu2p−12u1p+12在Ω中,u1,u2>;0在Ω中;u1=u2=0在∂Ω中,其中p>;1,μ1,μ2,β>;0和Ω是R2中的光滑有界域。我们证明了正解的先验估计。此外,在星形域sp∫Ω|∇u1,p|2+|∇u2,p|2dx≤C的自然条件下,我们完整地描述了正解(u1,p,u2,p)为p→+∞时的浓度现象,包括k=1,2时的L∞范数量化‖uk,p‖L∞(Ω)→e,能量量化p∫Ω|∇u1,p|2+|∇u2,p|2dx→8nπe, n∈n≥2,等等。特别地,我们证明了每个集中点贡献的“局部质量”必须是{(8π,8π),(8π,0),(0,8π)}中的一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信