Catharina Marques Sacramento, Márcio Zaffalon Casati, Enilson Antonio Sallum, Renato Corrêa Viana Casarin, Karina Gonzales Silvério
{"title":"Cholecystokinin-antagonist lorglumide inhibits osteogenic differentiation in human bone marrow stem cells","authors":"Catharina Marques Sacramento, Márcio Zaffalon Casati, Enilson Antonio Sallum, Renato Corrêa Viana Casarin, Karina Gonzales Silvério","doi":"10.1016/j.diff.2025.100867","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The relationship between gastrointestinal hormones and bone metabolism has gained significant attention, but the specific role of cholecystokinin (CCK) in bone homeostasis remains largely unexplored. This study aimed to evaluate the role of the CCK pathway in osteogenic differentiation by blocking its mechanisms in human bone marrow stem cells (hBMSCs).</div></div><div><h3>Methods</h3><div>hBMSCs were exposed to Lorglumide, a CCK signaling pathway inhibitor, under osteogenic conditions. Cell viability, osteogenic differentiation, RT-qPCR analysis of CCK, FOS, OCN, and RUNX2, IP3 receptor phosphorylation, alkaline phosphatase (ALP) activity, and calcium concentration (Ca<sup>2</sup>) were assessed to elucidate Lorglumide's effects on osteogenesis and related mechanisms.</div></div><div><h3>Results</h3><div>Lorglumide reduced hBMSC viability at concentrations ≥30 μM over 14 days. Mineralization assays revealed dose-dependent inhibition, with 20 μM maintaining mineralization comparable to controls. RT-qPCR showed that Lorglumide suppressed CCK expression and altered osteogenic gene expression (FOS, RUNX2, OCN). Lorglumide decreased Ca<sup>2</sup> concentration compared to osteogenic medium (OM) and reduced ALP activity, indicating its inhibitory effect on key osteogenic mechanisms.</div></div><div><h3>Conclusion</h3><div>Lorglumide inhibits hBMSC osteoblastic differentiation, suggesting a possible role for the CCK signaling pathway in bone metabolism. These findings emphasize the involvement of gastrointestinal hormones in bone homeostasis, suggesting new therapeutic opportunities targeting hormonal regulation to promote bone health. Further studies are needed to explore the underlying mechanisms and potential clinical applications of modulating CCK pathways in bone-related disorders.</div></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"143 ","pages":"Article 100867"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468125000349","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The relationship between gastrointestinal hormones and bone metabolism has gained significant attention, but the specific role of cholecystokinin (CCK) in bone homeostasis remains largely unexplored. This study aimed to evaluate the role of the CCK pathway in osteogenic differentiation by blocking its mechanisms in human bone marrow stem cells (hBMSCs).
Methods
hBMSCs were exposed to Lorglumide, a CCK signaling pathway inhibitor, under osteogenic conditions. Cell viability, osteogenic differentiation, RT-qPCR analysis of CCK, FOS, OCN, and RUNX2, IP3 receptor phosphorylation, alkaline phosphatase (ALP) activity, and calcium concentration (Ca2) were assessed to elucidate Lorglumide's effects on osteogenesis and related mechanisms.
Results
Lorglumide reduced hBMSC viability at concentrations ≥30 μM over 14 days. Mineralization assays revealed dose-dependent inhibition, with 20 μM maintaining mineralization comparable to controls. RT-qPCR showed that Lorglumide suppressed CCK expression and altered osteogenic gene expression (FOS, RUNX2, OCN). Lorglumide decreased Ca2 concentration compared to osteogenic medium (OM) and reduced ALP activity, indicating its inhibitory effect on key osteogenic mechanisms.
Conclusion
Lorglumide inhibits hBMSC osteoblastic differentiation, suggesting a possible role for the CCK signaling pathway in bone metabolism. These findings emphasize the involvement of gastrointestinal hormones in bone homeostasis, suggesting new therapeutic opportunities targeting hormonal regulation to promote bone health. Further studies are needed to explore the underlying mechanisms and potential clinical applications of modulating CCK pathways in bone-related disorders.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.