Puyue Zhang , Ziru Ye , Zhong Tian , Qing Liu , Yong Huang
{"title":"Network of nicotinamide mononucleotide biosynthesis: substrate tracking, rate-limiting enzyme, and regulatory strategy","authors":"Puyue Zhang , Ziru Ye , Zhong Tian , Qing Liu , Yong Huang","doi":"10.1016/j.synbio.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Nicotinamide mononucleotide (NMN) is a nucleotide of significant biological importance, found abundantly in various foods such as meat, fruits, and vegetables. Recently, its potential effects in delaying aging have attracted considerable attention. Although chemical synthesis methods are commonly employed, they do not align with green production standards. In contrast, the biosynthesis of NMN is both safer and more environmentally sustainable. In this review, we established a novel “substrate-pathway-enzymology” framework to analyze the research on NMN biosynthesis. First, we systematically trace four substrates (nicotinamide ribose, nicotinamide, niacin, and nicotinamide adenine dinucleotide) and their respective metabolic routes. Then, we thoroughly investigate key enzymes through structural biology and protein engineering approaches, and converge the fragmented research findings across pathways to construct a comprehensive NMN biosynthesis network, revealing intricate metabolic regulations and pathway interactions. Through comparative analysis, the most promising biosynthetic pathway and prospects are discussed. Additionally, this review also provides original perspectives for NMN industrial development.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 3","pages":"Pages 959-972"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000523","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nicotinamide mononucleotide (NMN) is a nucleotide of significant biological importance, found abundantly in various foods such as meat, fruits, and vegetables. Recently, its potential effects in delaying aging have attracted considerable attention. Although chemical synthesis methods are commonly employed, they do not align with green production standards. In contrast, the biosynthesis of NMN is both safer and more environmentally sustainable. In this review, we established a novel “substrate-pathway-enzymology” framework to analyze the research on NMN biosynthesis. First, we systematically trace four substrates (nicotinamide ribose, nicotinamide, niacin, and nicotinamide adenine dinucleotide) and their respective metabolic routes. Then, we thoroughly investigate key enzymes through structural biology and protein engineering approaches, and converge the fragmented research findings across pathways to construct a comprehensive NMN biosynthesis network, revealing intricate metabolic regulations and pathway interactions. Through comparative analysis, the most promising biosynthetic pathway and prospects are discussed. Additionally, this review also provides original perspectives for NMN industrial development.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.