2D Fe-hxl-UiO-67_SH/Au Nanosheets: Cascaded Nanozyme-Driven Chemodynamic Therapy Enhancement for Triple-Negative Breast Cancer

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gen Li, Xiuli Zhang, Wenhui Yang, Baicheng Liao, Xiaoli Chen, Nan Yu*, Liyong Chen* and Xuefu Hu*, 
{"title":"2D Fe-hxl-UiO-67_SH/Au Nanosheets: Cascaded Nanozyme-Driven Chemodynamic Therapy Enhancement for Triple-Negative Breast Cancer","authors":"Gen Li,&nbsp;Xiuli Zhang,&nbsp;Wenhui Yang,&nbsp;Baicheng Liao,&nbsp;Xiaoli Chen,&nbsp;Nan Yu*,&nbsp;Liyong Chen* and Xuefu Hu*,&nbsp;","doi":"10.1021/acsanm.5c0066410.1021/acsanm.5c00664","DOIUrl":null,"url":null,"abstract":"<p >Chemodynamic therapy (CDT) has emerged as a promising strategy for cancer treatment by leveraging Fenton reactions to generate cytotoxic reactive oxygen species (ROS). However, its therapeutic efficacy remains hindered by the limited endogenous H<sub>2</sub>O<sub>2</sub> levels in the tumor microenvironment (TME) and the instability of catalytic metal ions. Here, we report the rational design of Fe-hxl-UiO-67_SH/Au nanosheets, a multifunctional nanoplatform that integrates glucose oxidase (GOx)-mimicking activity with peroxidase (POD)-like properties for enhanced CDT. The Fe-hxl-UiO-67_SH/Au nanosheets efficiently catalyze glucose oxidation to produce H<sub>2</sub>O<sub>2</sub>, which subsequently undergoes a Fenton reaction to generate hydroxyl radicals (<sup>•</sup>OH), leading to lipid peroxide (LPO) accumulation and ferroptotic cell death. Furthermore, the incorporation of Au nanoparticles (AuNPs) synergistically amplifies ROS production while stabilizing Fe species within the frameworks, ensuring sustained catalytic activity. In vitro studies demonstrate that Fe-hxl-UiO-67_SH/Au exhibits potent anticancer effects against triple-negative breast cancer (TNBC), inducing mitochondrial dysfunction and ferroptosis through glutathione peroxidase 4 (GPX4) inhibition. This work presents a nanozyme-driven strategy for CDT enhancement, offering a promising approach for overcoming the limitations of traditional Fenton-based therapies and advancing cancer nanomedicine.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 19","pages":"9643–9649 9643–9649"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00664","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemodynamic therapy (CDT) has emerged as a promising strategy for cancer treatment by leveraging Fenton reactions to generate cytotoxic reactive oxygen species (ROS). However, its therapeutic efficacy remains hindered by the limited endogenous H2O2 levels in the tumor microenvironment (TME) and the instability of catalytic metal ions. Here, we report the rational design of Fe-hxl-UiO-67_SH/Au nanosheets, a multifunctional nanoplatform that integrates glucose oxidase (GOx)-mimicking activity with peroxidase (POD)-like properties for enhanced CDT. The Fe-hxl-UiO-67_SH/Au nanosheets efficiently catalyze glucose oxidation to produce H2O2, which subsequently undergoes a Fenton reaction to generate hydroxyl radicals (OH), leading to lipid peroxide (LPO) accumulation and ferroptotic cell death. Furthermore, the incorporation of Au nanoparticles (AuNPs) synergistically amplifies ROS production while stabilizing Fe species within the frameworks, ensuring sustained catalytic activity. In vitro studies demonstrate that Fe-hxl-UiO-67_SH/Au exhibits potent anticancer effects against triple-negative breast cancer (TNBC), inducing mitochondrial dysfunction and ferroptosis through glutathione peroxidase 4 (GPX4) inhibition. This work presents a nanozyme-driven strategy for CDT enhancement, offering a promising approach for overcoming the limitations of traditional Fenton-based therapies and advancing cancer nanomedicine.

二维Fe-hxl-UiO-67_SH/Au纳米片:级联纳米酶驱动的三阴性乳腺癌化学动力学治疗增强
化学动力疗法(CDT)通过利用芬顿反应产生细胞毒性活性氧(ROS),已成为一种很有前途的癌症治疗策略。然而,其治疗效果仍然受到肿瘤微环境(TME)中内源性H2O2水平有限和催化金属离子不稳定性的影响。在这里,我们报告了Fe-hxl-UiO-67_SH/Au纳米片的合理设计,这是一个多功能纳米平台,集成了葡萄糖氧化酶(GOx)模拟活性和过氧化物酶(POD)样性质,以增强CDT。Fe-hxl-UiO-67_SH/Au纳米片有效催化葡萄糖氧化生成H2O2, H2O2随后发生芬顿反应生成羟基自由基(•OH),导致脂质过氧化(LPO)积累和铁致细胞死亡。此外,Au纳米颗粒(AuNPs)的加入协同放大了ROS的产生,同时稳定了框架内的Fe物种,确保了持续的催化活性。体外研究表明,Fe-hxl-UiO-67_SH/Au对三阴性乳腺癌(TNBC)具有强大的抗癌作用,通过抑制谷胱甘肽过氧化物酶4 (GPX4)诱导线粒体功能障碍和铁凋亡。这项工作提出了一种纳米酶驱动的CDT增强策略,为克服传统fenton疗法的局限性和推进癌症纳米医学提供了一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信