Feixiong Chen*, Bahar Mostafiz, Johanna Suni and Emilia Peltola*,
{"title":"Electrochemical Design of Gold Nanostructures for Controllable Electrochemical Performance and Scalable Aptamer Sensing Application","authors":"Feixiong Chen*, Bahar Mostafiz, Johanna Suni and Emilia Peltola*, ","doi":"10.1021/acsanm.5c0096210.1021/acsanm.5c00962","DOIUrl":null,"url":null,"abstract":"<p >A simple electrochemical method for designing gold nanostructures was developed by programming deposition potentials, enabling surface nanoengineering of screen-printed electrodes. As a result of this method, we have observed three distinct growth modes of gold nanostructures, which, depending on their various morphologies, are Needle-shaped gold nanostructures (one dimensionally dominated mode), leaf-shaped gold nanostructures (two-dimensionally dominated mode), and coral-shaped gold nanostructures (three-dimensionally dominated mode). All gold nanostructures exhibited an enhanced electrochemical response to the redox solution, improved reversibility, and reduced impedance, compared to the unmodified electrodes, albeit to varying degrees. We demonstrated the superior antifouling performance of the coral-shaped gold nanostructures in a redox solution containing bovine serum albumin, compared to other gold nanostructures. Finally, to assess another aspect of differences in the electrochemical sensing behaviors, we constructed an aptamer sensor for progesterone detection, where the needle-shaped gold nanostructures showed the highest signal gain using Electrochemical Impedance Spectroscopy, in comparison to that of leaf-shaped and coral-shaped gold nanostructures. We envision that the proposed method will potentially enable the design or fabrication of desirable gold nanostructures with increasingly complex or hierarchical structures, bearing promising applications in wide sensing and biomedical applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 19","pages":"9812–9823 9812–9823"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsanm.5c00962","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00962","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A simple electrochemical method for designing gold nanostructures was developed by programming deposition potentials, enabling surface nanoengineering of screen-printed electrodes. As a result of this method, we have observed three distinct growth modes of gold nanostructures, which, depending on their various morphologies, are Needle-shaped gold nanostructures (one dimensionally dominated mode), leaf-shaped gold nanostructures (two-dimensionally dominated mode), and coral-shaped gold nanostructures (three-dimensionally dominated mode). All gold nanostructures exhibited an enhanced electrochemical response to the redox solution, improved reversibility, and reduced impedance, compared to the unmodified electrodes, albeit to varying degrees. We demonstrated the superior antifouling performance of the coral-shaped gold nanostructures in a redox solution containing bovine serum albumin, compared to other gold nanostructures. Finally, to assess another aspect of differences in the electrochemical sensing behaviors, we constructed an aptamer sensor for progesterone detection, where the needle-shaped gold nanostructures showed the highest signal gain using Electrochemical Impedance Spectroscopy, in comparison to that of leaf-shaped and coral-shaped gold nanostructures. We envision that the proposed method will potentially enable the design or fabrication of desirable gold nanostructures with increasingly complex or hierarchical structures, bearing promising applications in wide sensing and biomedical applications.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.