Marco Zanchi, Stefano Zapperi, Stefano Bocchi, Oxana Drofa, Silvio Davolio, Caterina A.M. La Porta
{"title":"Improving localized weather predictions for precision agriculture: A Time-Series Mixer approach for hazardous event detection","authors":"Marco Zanchi, Stefano Zapperi, Stefano Bocchi, Oxana Drofa, Silvio Davolio, Caterina A.M. La Porta","doi":"10.1016/j.envsoft.2025.106509","DOIUrl":null,"url":null,"abstract":"Natural environmental systems and human activities are deeply interconnected, especially in agriculture. Despite advancements in agricultural techniques, weather remains a critical factor influencing crop yields and livestock health. Precision agriculture relies on weather predictions to mitigate environmental risks caused by weather. However, numerical weather predictions are generated by global or regional numerical models, lacking the resolution to capture site-specific conditions. Artificial intelligence can address this gap by integrating numerical weather predictions data with local station observations. This study employs the Time-Series Mixer (TSMixer) neural network to forecast temperature, wind speed, relative humidity, and precipitation over a 45-hour horizon. Trained with predictions from the MOLOCH model and data from ARPA stations near six agricultural sites in Northern Italy, TSMixer achieves greater accuracy than the MOLOCH model. Additionally, TSMixer excels in detecting hazardous events for precision agriculture, including frost damage, heat stress, and germination block, highlighting its value for environmental risk management.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"33 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2025.106509","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Natural environmental systems and human activities are deeply interconnected, especially in agriculture. Despite advancements in agricultural techniques, weather remains a critical factor influencing crop yields and livestock health. Precision agriculture relies on weather predictions to mitigate environmental risks caused by weather. However, numerical weather predictions are generated by global or regional numerical models, lacking the resolution to capture site-specific conditions. Artificial intelligence can address this gap by integrating numerical weather predictions data with local station observations. This study employs the Time-Series Mixer (TSMixer) neural network to forecast temperature, wind speed, relative humidity, and precipitation over a 45-hour horizon. Trained with predictions from the MOLOCH model and data from ARPA stations near six agricultural sites in Northern Italy, TSMixer achieves greater accuracy than the MOLOCH model. Additionally, TSMixer excels in detecting hazardous events for precision agriculture, including frost damage, heat stress, and germination block, highlighting its value for environmental risk management.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.