{"title":"Generating and predicting soil desiccation cracking patterns utilizing a stochastic model based on geometric parameters","authors":"Zhan-Ming Yang, Chao-Sheng Tang, Tao Wang, Qing Cheng, Jun-Dong Liu, Zhi-Xiong Zeng, Zhengtao Shen","doi":"10.1016/j.enggeo.2025.108122","DOIUrl":null,"url":null,"abstract":"<div><div>Soil desiccation cracks and crack networks significantly influence the mechanical properties of soils. Accurate modeling and prediction of crack development are essential for both laboratory research and practical applications in geotechnical engineering and environmental science. In this study, a Desiccation Crack Simulation Program (DCSP) was developed on the MATLAB platform to simulate the evolution of soil desiccation cracks. Based on comprehensive statistical analyses of crack network images from previous studies and detailed observations of crack propagation, we propose a stochastic crack network generation model informed by geometric parameters and crack development processes. The model encompasses five key steps: (1) selection of crack initiation points, (2) crack propagation and intersection, (3) termination of crack growth, (4) secondary crack generation, and (5) final network formation. Key parameters include crack step size, randomized propagation direction, number of initial development points, and crack attraction distance. The DCSP enables both the rapid generation of random crack networks and the prediction of partially developed networks. The program was validated using two soil types, Xiashu soil and Pukou soil, demonstrating its effectiveness in simulating crack evolution. Prediction accuracy improves as crack network develops, highlighting the model's potential for predicting soil desiccation crack patterns.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"353 ","pages":"Article 108122"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225002182","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soil desiccation cracks and crack networks significantly influence the mechanical properties of soils. Accurate modeling and prediction of crack development are essential for both laboratory research and practical applications in geotechnical engineering and environmental science. In this study, a Desiccation Crack Simulation Program (DCSP) was developed on the MATLAB platform to simulate the evolution of soil desiccation cracks. Based on comprehensive statistical analyses of crack network images from previous studies and detailed observations of crack propagation, we propose a stochastic crack network generation model informed by geometric parameters and crack development processes. The model encompasses five key steps: (1) selection of crack initiation points, (2) crack propagation and intersection, (3) termination of crack growth, (4) secondary crack generation, and (5) final network formation. Key parameters include crack step size, randomized propagation direction, number of initial development points, and crack attraction distance. The DCSP enables both the rapid generation of random crack networks and the prediction of partially developed networks. The program was validated using two soil types, Xiashu soil and Pukou soil, demonstrating its effectiveness in simulating crack evolution. Prediction accuracy improves as crack network develops, highlighting the model's potential for predicting soil desiccation crack patterns.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.