Emircan Sert , Ece Ozmen , Robert Owen , Betül Aldemir Dikici
{"title":"Unlocking the biological potential of emulsion-templated matrices through surface engineering for biomedical applications","authors":"Emircan Sert , Ece Ozmen , Robert Owen , Betül Aldemir Dikici","doi":"10.1016/j.polymer.2025.128549","DOIUrl":null,"url":null,"abstract":"<div><div>Emulsion templating is a highly advantageous route for the fabrication of porous materials, enabling the development of matrices with high porosity, high interconnectivity, and precise morphological control. Synthetic polymers are most widely used in the fabrication of emulsion-templated tissue engineering scaffolds due to their superior mechanical strength, ease of fabrication, control over polymer properties, and batch-to-batch stability. The biological response is strongly associated with the surface properties of the biomaterials; however, scaffolds constructed from synthetic polymers often lack cell recognition sites and exhibit limited bioactivity. Thus, synthetic polymer-based porous matrices commonly require surface post-modification to improve cell adhesion, proliferation, migration, gene expression, and differentiation processes. To date, extensive work has been carried out investigating surface modification of scaffolds fabricated <em>via</em> traditional scaffold fabrication techniques. Still, studies addressing the post-modification of emulsion-templated matrices are comparatively limited despite an exponential increase in the number of publications on emulsion templating for tissue engineering in recent years. This review will first examine the fundamentals of emulsion templating, then describe cell adhesion and the characteristics of scaffolds that influence cell-material interactions. It will then provide a comprehensive analysis of surface modification techniques and recent advancements in surface-modified emulsion-templated matrices for tissue engineering applications. Finally, we address the challenges and future directions in this rapidly evolving field. We anticipate that this comprehensive literature review will present the current state-of-the-art and serve as a valuable roadmap for researchers seeking to enhance the biological performance of their emulsion-templated scaffolds through surface modifications. Such scaffold optimisation strategies not only improve cell-material interactions but also hold translational potential for advancing human healthcare through more effective regenerative therapies.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"333 ","pages":"Article 128549"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003238612500535X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Emulsion templating is a highly advantageous route for the fabrication of porous materials, enabling the development of matrices with high porosity, high interconnectivity, and precise morphological control. Synthetic polymers are most widely used in the fabrication of emulsion-templated tissue engineering scaffolds due to their superior mechanical strength, ease of fabrication, control over polymer properties, and batch-to-batch stability. The biological response is strongly associated with the surface properties of the biomaterials; however, scaffolds constructed from synthetic polymers often lack cell recognition sites and exhibit limited bioactivity. Thus, synthetic polymer-based porous matrices commonly require surface post-modification to improve cell adhesion, proliferation, migration, gene expression, and differentiation processes. To date, extensive work has been carried out investigating surface modification of scaffolds fabricated via traditional scaffold fabrication techniques. Still, studies addressing the post-modification of emulsion-templated matrices are comparatively limited despite an exponential increase in the number of publications on emulsion templating for tissue engineering in recent years. This review will first examine the fundamentals of emulsion templating, then describe cell adhesion and the characteristics of scaffolds that influence cell-material interactions. It will then provide a comprehensive analysis of surface modification techniques and recent advancements in surface-modified emulsion-templated matrices for tissue engineering applications. Finally, we address the challenges and future directions in this rapidly evolving field. We anticipate that this comprehensive literature review will present the current state-of-the-art and serve as a valuable roadmap for researchers seeking to enhance the biological performance of their emulsion-templated scaffolds through surface modifications. Such scaffold optimisation strategies not only improve cell-material interactions but also hold translational potential for advancing human healthcare through more effective regenerative therapies.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.