Yining Gao , Ning Liu , Fangyuan Meng , Leheng Dong , Zhijun Fei , Manjia Chen , Chengshuai Liu , Pan Wu , Hui Tong
{"title":"The fate of cadmium during the hydrolysis and solid-state transformation of iron","authors":"Yining Gao , Ning Liu , Fangyuan Meng , Leheng Dong , Zhijun Fei , Manjia Chen , Chengshuai Liu , Pan Wu , Hui Tong","doi":"10.1016/j.watres.2025.123840","DOIUrl":null,"url":null,"abstract":"<div><div>The ubiquitous hydrolysis of Fe(III) ions in nature leads to the formation of ferrihydrite (Fh), which then undergoes solid-state transformation into crystalline mineral phases. However, the impact of this process on the geochemical fate of cadmium (Cd) in aquatic environments is not yet fully understood. This investigation systematically examined the partitioning mechanisms of Cd during the aforementioned processes through extraction techniques and multiple characterization methodologies. The experimental results demonstrated that Fe(III) ions first undergo the diffusion-limited aggregation (DLA) stage, forming loosely bound clusters with high Cd co-precipitation capacity. Upon transitioning to the reaction-limited aggregation (RLA) stage, Fe clusters exhibit increased structural complexity, wherein the expansion of radius of gyration predominantly governs Cd retention. As colloidal Fh develops, surface adsorption becomes the predominant mechanism for Cd sequestration. Throughout solid-state transformation in systems containing 1 mol% Cd, dehydroxylation processes induced acidification, facilitating the progressive liberation of Cd. Conversely, in systems with 10 mol% Cd, significant Cd incorporation induces distortion in the crystalline lattice structure, promoting system alkalinization and, consequently, enhancing Cd immobilization. pH gradient solid-state transformation experiments demonstrated that when initial pH values were below 8, final pH measurements were significantly lower than initial values, and vice versa. pH conditions potentially regulate the speciation of Fe within Fh, ultimately exerting substantial influence on Cd partitioning behavior. In summary, Fh formation beneficially stabilizes Cd, while its subsequent solid-state transformation triggers Cd redistribution.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123840"},"PeriodicalIF":11.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425007481","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ubiquitous hydrolysis of Fe(III) ions in nature leads to the formation of ferrihydrite (Fh), which then undergoes solid-state transformation into crystalline mineral phases. However, the impact of this process on the geochemical fate of cadmium (Cd) in aquatic environments is not yet fully understood. This investigation systematically examined the partitioning mechanisms of Cd during the aforementioned processes through extraction techniques and multiple characterization methodologies. The experimental results demonstrated that Fe(III) ions first undergo the diffusion-limited aggregation (DLA) stage, forming loosely bound clusters with high Cd co-precipitation capacity. Upon transitioning to the reaction-limited aggregation (RLA) stage, Fe clusters exhibit increased structural complexity, wherein the expansion of radius of gyration predominantly governs Cd retention. As colloidal Fh develops, surface adsorption becomes the predominant mechanism for Cd sequestration. Throughout solid-state transformation in systems containing 1 mol% Cd, dehydroxylation processes induced acidification, facilitating the progressive liberation of Cd. Conversely, in systems with 10 mol% Cd, significant Cd incorporation induces distortion in the crystalline lattice structure, promoting system alkalinization and, consequently, enhancing Cd immobilization. pH gradient solid-state transformation experiments demonstrated that when initial pH values were below 8, final pH measurements were significantly lower than initial values, and vice versa. pH conditions potentially regulate the speciation of Fe within Fh, ultimately exerting substantial influence on Cd partitioning behavior. In summary, Fh formation beneficially stabilizes Cd, while its subsequent solid-state transformation triggers Cd redistribution.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.