Yan Liu , Lu (Carol) Tong , Qian Xi , Yilin Ma , Wenbo Du
{"title":"Traveler time allocation between activities and travel: A computational graph-infused machine learning framework with bi-mode MDCEV model","authors":"Yan Liu , Lu (Carol) Tong , Qian Xi , Yilin Ma , Wenbo Du","doi":"10.1016/j.tre.2025.104154","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple discrete–continuous extreme value (MDCEV) model has received increasing attention in modeling travelers’ time allocation. However, the MDCEV model primarily focuses on activity choices that generate increased utility over time, overlooking the fact that travel, as a derived activity, is typically something people prefer to save time on. To bridge the research gap, we introduce the bi-mode utility multiple discrete–continuous extreme value (BMU-MDCEV) model. This model seamlessly integrates a diminishing function for travel with the classical utility function, underscoring the principle that individuals typically aim to minimize travel time. Inspired by the fact that both choice modeling and machine learning (ML) involve non-convex optimization processes, this study implements an ML-based computational graph (CG) mechanism to provide reliable and efficient parameter estimates for the proposed model. This approach emphasizes the integration of theory- and data-driven methods within the context of multiple discrete–continuous choices. Validated using the National Household Travel Survey (NHTS) 2017 dataset, the CG-enhanced BMU-MDCEV model effectively uncovers socioeconomic heterogeneity and captures the substitution and complementarity in time allocation patterns. Our analysis of the marginal utility of various travel types reveals a positive correlation between travel time tolerance and activity satiation for discretionary activities (e.g., leisure, shopping). Conversely, individuals tend to reduce unnecessary travel time for mandatory daily activities (e.g., home-based activity, work), regardless of the degree of activity satiation. By shedding light on the nuanced mechanisms behind individuals’ time allocation, our proposed method paves the way for informed transport management strategies that respond more effectively to individual behavior.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"200 ","pages":"Article 104154"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554525001954","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple discrete–continuous extreme value (MDCEV) model has received increasing attention in modeling travelers’ time allocation. However, the MDCEV model primarily focuses on activity choices that generate increased utility over time, overlooking the fact that travel, as a derived activity, is typically something people prefer to save time on. To bridge the research gap, we introduce the bi-mode utility multiple discrete–continuous extreme value (BMU-MDCEV) model. This model seamlessly integrates a diminishing function for travel with the classical utility function, underscoring the principle that individuals typically aim to minimize travel time. Inspired by the fact that both choice modeling and machine learning (ML) involve non-convex optimization processes, this study implements an ML-based computational graph (CG) mechanism to provide reliable and efficient parameter estimates for the proposed model. This approach emphasizes the integration of theory- and data-driven methods within the context of multiple discrete–continuous choices. Validated using the National Household Travel Survey (NHTS) 2017 dataset, the CG-enhanced BMU-MDCEV model effectively uncovers socioeconomic heterogeneity and captures the substitution and complementarity in time allocation patterns. Our analysis of the marginal utility of various travel types reveals a positive correlation between travel time tolerance and activity satiation for discretionary activities (e.g., leisure, shopping). Conversely, individuals tend to reduce unnecessary travel time for mandatory daily activities (e.g., home-based activity, work), regardless of the degree of activity satiation. By shedding light on the nuanced mechanisms behind individuals’ time allocation, our proposed method paves the way for informed transport management strategies that respond more effectively to individual behavior.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.