Xi-Chen Cui , Yan Zheng , Ye Liu , Zhiguang Yuchi , Ying-Jin Yuan
{"title":"AI-driven de novo enzyme design: Strategies, applications, and future prospects","authors":"Xi-Chen Cui , Yan Zheng , Ye Liu , Zhiguang Yuchi , Ying-Jin Yuan","doi":"10.1016/j.biotechadv.2025.108603","DOIUrl":null,"url":null,"abstract":"<div><div>Enzymes are indispensable for biological processes and diverse applications across industries. While top-down modification strategies, such as directed evolution, have achieved remarkable success in optimizing existing enzymes, bottom-up <em>de novo</em> enzyme design has emerged as a transformative approach for engineering novel enzymes with customized catalytic functions, independent of natural templates. Recent advancements in artificial intelligence (AI) and computational power have significantly accelerated this field, enabling breakthroughs in enzyme engineering. These technologies facilitate the rapid generation of enzyme structures and amino acid sequences optimized for specific functions, thereby enhancing design efficiency. They also support functional validation and activity optimization, improving the catalytic performance, stability, and robustness of <em>de novo</em> designed enzymes. This review highlights recent advancements in AI-driven <em>de novo</em> enzyme design, discusses strategies for validation and optimization, and examines the challenges and future prospects of integrating these technologies into enzyme development.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"82 ","pages":"Article 108603"},"PeriodicalIF":12.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975025000898","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymes are indispensable for biological processes and diverse applications across industries. While top-down modification strategies, such as directed evolution, have achieved remarkable success in optimizing existing enzymes, bottom-up de novo enzyme design has emerged as a transformative approach for engineering novel enzymes with customized catalytic functions, independent of natural templates. Recent advancements in artificial intelligence (AI) and computational power have significantly accelerated this field, enabling breakthroughs in enzyme engineering. These technologies facilitate the rapid generation of enzyme structures and amino acid sequences optimized for specific functions, thereby enhancing design efficiency. They also support functional validation and activity optimization, improving the catalytic performance, stability, and robustness of de novo designed enzymes. This review highlights recent advancements in AI-driven de novo enzyme design, discusses strategies for validation and optimization, and examines the challenges and future prospects of integrating these technologies into enzyme development.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.