Cation-driven phase transition and anion-enhanced kinetics for high energy efficiency zinc-interhalide complex batteries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wei Zhong, Hao Cheng, Shichao Zhang, Laixi Li, Chaoqiang Tan, Wei Chen, Yingying Lu
{"title":"Cation-driven phase transition and anion-enhanced kinetics for high energy efficiency zinc-interhalide complex batteries","authors":"Wei Zhong, Hao Cheng, Shichao Zhang, Laixi Li, Chaoqiang Tan, Wei Chen, Yingying Lu","doi":"10.1038/s41467-025-59894-w","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn-halogen batteries, valued for high safety, large capacity, and low cost, suffer from the polyhalide shuttle effect and chaotic zinc electrodeposition, reducing energy efficiency and lifespan. Here we show a cation-driven positive electrode phase transition to suppress the shuttle effect and achieve uniform zinc electrodeposition, along with an anion kinetic enhancement strategy to improve energy efficiency and lifespan. Taking tetramethylammonium halide (TMAX, X = F, Cl, Br) as a subject, TMA<sup>+</sup> promotes oriented zinc (101) deposition on the negative electrode through electrostatic shielding, significantly extending cycling life. Concurrently, it captures I<sub>3</sub><sup>–</sup> on the positive electrode, forming a stable solid-phase interhalide complex that enhances coulombic efficiency. Compared to I<sub>3</sub><sup>–</sup> and TMAI<sub>3</sub>, X<sup>–</sup> anions lower the Gibbs free energy differences of I<sup>–</sup> → I<sub>2</sub>X<sup>–</sup> and I<sub>2</sub>X<sup>–</sup> → TMAI<sub>2</sub>X, accelerating I<sup>–</sup>/I<sub>2</sub>X<sup>–</sup>/TMAI<sub>2</sub>X conversions and improving voltage efficiency. In TMAF-modified electrolytes, zinc interhalide complex batteries achieve a high energy efficiency of 95.2% at 0.2 A g<sup>–1</sup> with good reversibility, showing only 0.1% capacity decay per cycle over 1000 cycles. At 1 A g<sup>–1</sup>, they show a low decay rate of 0.1‰ per cycle across 10,000 cycles. This study provides insights into enhancing energy efficiency and long-term stability for sustainable energy storage.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"114 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59894-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn-halogen batteries, valued for high safety, large capacity, and low cost, suffer from the polyhalide shuttle effect and chaotic zinc electrodeposition, reducing energy efficiency and lifespan. Here we show a cation-driven positive electrode phase transition to suppress the shuttle effect and achieve uniform zinc electrodeposition, along with an anion kinetic enhancement strategy to improve energy efficiency and lifespan. Taking tetramethylammonium halide (TMAX, X = F, Cl, Br) as a subject, TMA+ promotes oriented zinc (101) deposition on the negative electrode through electrostatic shielding, significantly extending cycling life. Concurrently, it captures I3 on the positive electrode, forming a stable solid-phase interhalide complex that enhances coulombic efficiency. Compared to I3 and TMAI3, X anions lower the Gibbs free energy differences of I → I2X and I2X → TMAI2X, accelerating I/I2X/TMAI2X conversions and improving voltage efficiency. In TMAF-modified electrolytes, zinc interhalide complex batteries achieve a high energy efficiency of 95.2% at 0.2 A g–1 with good reversibility, showing only 0.1% capacity decay per cycle over 1000 cycles. At 1 A g–1, they show a low decay rate of 0.1‰ per cycle across 10,000 cycles. This study provides insights into enhancing energy efficiency and long-term stability for sustainable energy storage.

Abstract Image

高能效卤化锌复合电池的阳离子驱动相变和阴离子增强动力学
卤水锌电池具有高安全性、大容量、低成本等优点,但存在多卤化物穿梭效应和锌电沉积混乱等问题,降低了电池的能效和寿命。在这里,我们展示了一个阳离子驱动的正极相变来抑制穿梭效应并实现均匀的锌电沉积,以及一个阴离子动力学增强策略来提高能源效率和寿命。以四甲基卤化铵(TMAX, X = F, Cl, Br)为研究对象,TMA+通过静电屏蔽促进负极取向锌(101)沉积,显著延长循环寿命。同时,它捕获了正极上的I3 -,形成了稳定的固相卤化物配合物,提高了库仑效率。与I3 -和TMAI3相比,X -阴离子降低了I -→I2X -和I2X -→TMAI2X的吉布斯自由能差,加速了I - /I2X - /TMAI2X的转换,提高了电压效率。在tmaf修饰的电解质中,在0.2 a g-1下,卤化锌复合电池的能量效率达到95.2%,具有良好的可逆性,在1000次循环中,每循环仅显示0.1%的容量衰减。在1 A g-1时,它们表现出低的衰减率,在10,000个循环中每循环0.1‰。该研究为提高能源效率和可持续能源储存的长期稳定性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信