Fast single metal cation conduction in ion-water aggregated aqueous battery electrolytes

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chen Xu, Huijian Wang, Chengjun Lei, Jinye Li, Wenjiao Ma, Xiao Liang
{"title":"Fast single metal cation conduction in ion-water aggregated aqueous battery electrolytes","authors":"Chen Xu, Huijian Wang, Chengjun Lei, Jinye Li, Wenjiao Ma, Xiao Liang","doi":"10.1038/s41467-025-59958-x","DOIUrl":null,"url":null,"abstract":"<p>Metal ion transport in solution is closely linked to its interactions with counter anions and solvent molecules. This interplay creates a longstanding trade-off between transference number (<i>tM</i><sup><i>n</i></sup><i>⁺</i>), ionic conductivity (δ), and solvation process. Advanced aqueous batteries with metal negative electrode require electrolytes with unity <i>tM</i><sup><i>n</i></sup><i>⁺</i>, high δ and low solvation energy. Here we introduce guanidinium sulfate (Gdm<sub>2</sub>SO<sub>4</sub>) into metal sulfate aqueous solutions to construct the ion-water aggregated electrolytes. These electrolytes exhibit fast single ion conduction, approaching unity <i>tM</i><sup><i>n</i></sup><i>⁺</i> and high δ over 50 mS cm<sup>−1</sup> for various metal cations (M= Zn, Cu, Fe, Sn and Li). The ion-water aggregates, dynamically formed by strong hydrogen bonding between sulfate anions, guanidinium cations and water, featuring an unfrustrated topological structure to suppress both anion mobility and water activity. This general configuration decouples the metal charge carrier from its coordination sheath, resulting in decreased solvation energy. These merits lead to homogeneous metal plating/stripping behavior with high coulombic efficiency of 99.9%. Moreover, the ion-water aggregates with reinforced kosmotropic characteristics significantly decrease the freezing point of the sulfate-based electrolytes to –28 <sup>o</sup>C, making them widely applicable in aqueous metal batteries for both intercalation and conversion positive electrodes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"108 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59958-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metal ion transport in solution is closely linked to its interactions with counter anions and solvent molecules. This interplay creates a longstanding trade-off between transference number (tMn), ionic conductivity (δ), and solvation process. Advanced aqueous batteries with metal negative electrode require electrolytes with unity tMn, high δ and low solvation energy. Here we introduce guanidinium sulfate (Gdm2SO4) into metal sulfate aqueous solutions to construct the ion-water aggregated electrolytes. These electrolytes exhibit fast single ion conduction, approaching unity tMn and high δ over 50 mS cm−1 for various metal cations (M= Zn, Cu, Fe, Sn and Li). The ion-water aggregates, dynamically formed by strong hydrogen bonding between sulfate anions, guanidinium cations and water, featuring an unfrustrated topological structure to suppress both anion mobility and water activity. This general configuration decouples the metal charge carrier from its coordination sheath, resulting in decreased solvation energy. These merits lead to homogeneous metal plating/stripping behavior with high coulombic efficiency of 99.9%. Moreover, the ion-water aggregates with reinforced kosmotropic characteristics significantly decrease the freezing point of the sulfate-based electrolytes to –28 oC, making them widely applicable in aqueous metal batteries for both intercalation and conversion positive electrodes.

Abstract Image

在离子-水聚集的水性电池电解质中快速单金属阳离子传导
金属离子在溶液中的输运与其与反阴离子和溶剂分子的相互作用密切相关。这种相互作用在转移数(tMn⁺)、离子电导率(δ)和溶剂化过程之间产生了长期的权衡。先进的金属负极水电池要求电解质具有统一的tMn +、高δ和低溶剂化能。本文将硫酸胍(Gdm2SO4)引入到金属硫酸盐水溶液中,构建离子-水聚合电解质。这些电解质对各种金属阳离子(M= Zn、Cu、Fe、Sn和Li)具有快速的单离子传导、接近统一的tMn +和超过50 mS cm - 1的高δ。离子-水聚集体是由硫酸盐阴离子、胍离子和水之间的强氢键动态形成的,具有不受阻碍的拓扑结构,可以抑制阴离子的迁移和水的活性。这种一般构型使金属载流子与其配位鞘解耦,导致溶剂化能降低。这些优点导致金属镀层/剥离行为均匀,库仑效率高达99.9%。此外,具有增强全向性特性的离子-水聚集体显著降低了硫酸盐基电解质的凝固点至-28℃,使其广泛应用于水金属电池的插层和转换正极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信