Linear magnet with fluid-solid-switchable cells for flexible devices

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qiyu Deng, Hengjia Zhu, Zhipeng Zhao, Hegeng Li, Ling Yang, Xinya Wu, Yiyuan Zhang, Peng Yu, Xin Tang, Wei Li, Xiaobo Yin, Liqiu Wang
{"title":"Linear magnet with fluid-solid-switchable cells for flexible devices","authors":"Qiyu Deng, Hengjia Zhu, Zhipeng Zhao, Hegeng Li, Ling Yang, Xinya Wu, Yiyuan Zhang, Peng Yu, Xin Tang, Wei Li, Xiaobo Yin, Liqiu Wang","doi":"10.1038/s41467-025-59663-9","DOIUrl":null,"url":null,"abstract":"<p>Adjusting magnetization orienting and conformal assembling of high-coercivity micro-magnets at the microscale remains challenging, despite long-standing demand for space-resolved magnetic modulation in various applications. Local magnetic modulation, including remagnetization or reassembly, typically requires high fields and temperatures to overcome the coercivity and stringent conditions while suffering from low assembly efficiency or poor spatial resolution. Here, we report a linear magnet composed of a hydrogel (alginate) matrix and precisely discrete phase-change-material (PCM, eicosane) cells containing micro-magnetic particles (NdFeB, ~5 µm). Moderate local laser heating (~40 °C) reversibly switches PCM from solid to fluid state thus relaxing particles’ interfacial constraints inside the hydrogel matrix, overcoming the high-coercivity of magnetic assembly and allowing particles in cells to reorient under mild fields (≤30 mT). The linear magnet shows excellent discrete magnetization programmability (~150 µm) and stretchability (strain ~80%), enabling versatile functionalities such as conformal and patterned field generation, soft robotic actuation, flexible sensing, and interactive wearables with dynamically coded information.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59663-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adjusting magnetization orienting and conformal assembling of high-coercivity micro-magnets at the microscale remains challenging, despite long-standing demand for space-resolved magnetic modulation in various applications. Local magnetic modulation, including remagnetization or reassembly, typically requires high fields and temperatures to overcome the coercivity and stringent conditions while suffering from low assembly efficiency or poor spatial resolution. Here, we report a linear magnet composed of a hydrogel (alginate) matrix and precisely discrete phase-change-material (PCM, eicosane) cells containing micro-magnetic particles (NdFeB, ~5 µm). Moderate local laser heating (~40 °C) reversibly switches PCM from solid to fluid state thus relaxing particles’ interfacial constraints inside the hydrogel matrix, overcoming the high-coercivity of magnetic assembly and allowing particles in cells to reorient under mild fields (≤30 mT). The linear magnet shows excellent discrete magnetization programmability (~150 µm) and stretchability (strain ~80%), enabling versatile functionalities such as conformal and patterned field generation, soft robotic actuation, flexible sensing, and interactive wearables with dynamically coded information.

Abstract Image

线性磁体,用于柔性装置的流-固可切换单元
尽管在各种应用中对空间分辨磁调制的长期需求,但在微尺度上调整高矫顽力微磁体的磁化取向和共形组装仍然具有挑战性。局部磁调制,包括再磁化或重组,通常需要高磁场和温度来克服矫顽力和严格的条件,同时受到低组装效率或差空间分辨率的影响。在这里,我们报道了一种线性磁铁,由水凝胶(海藻酸盐)基质和含有微磁性颗粒(NdFeB, ~5µm)的精确离散相变材料(PCM,二十烷)细胞组成。适度的局部激光加热(~40°C)可逆地将PCM从固体状态切换到流体状态,从而放松了水凝胶基质内部颗粒的界面约束,克服了磁性组装的高矫顽力,并允许细胞中的颗粒在温和的磁场(≤30 mT)下重新定向。线性磁铁具有优异的离散磁化可编程性(~150µm)和拉伸性(应变~80%),可实现多种功能,如共形和图案场生成、软机器人驱动、柔性传感和具有动态编码信息的交互式可穿戴设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信