Machine learning message-passing for the scalable decoding of QLDPC codes

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Arshpreet Singh Maan, Alexandru Paler
{"title":"Machine learning message-passing for the scalable decoding of QLDPC codes","authors":"Arshpreet Singh Maan, Alexandru Paler","doi":"10.1038/s41534-025-01033-w","DOIUrl":null,"url":null,"abstract":"<p>We present Astra, a novel and scalable decoder using graph neural networks. In general, Quantum Low Density Parity Check (QLDPC) decoding is based on Belief Propagation (BP, a variant of message-passing) and requires time intensive post-processing methods such as Ordered Statistics Decoding (OSD). Our decoder works on the Tanner graph, similarly to BP. Without using any post-processing, Astra achieves higher thresholds and better Logical Error Rates (LER) compared to BPOSD, both for surface codes trained up to distance 11 and Bivariate Bicycle (BB) codes trained up to distance 18. Moreover, we can successfully extrapolate the decoding functionality: we decode high distances (surface code up to distance 25 and BB code up to distance 34) by using decoders trained on lower distances. Extrapolated Astra achieves better LER than BPOSD for BB codes. Astra(+OSD) achieves orders of magnitude lower logical error rates for BB codes compared to BP(+OSD).</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"74 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01033-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present Astra, a novel and scalable decoder using graph neural networks. In general, Quantum Low Density Parity Check (QLDPC) decoding is based on Belief Propagation (BP, a variant of message-passing) and requires time intensive post-processing methods such as Ordered Statistics Decoding (OSD). Our decoder works on the Tanner graph, similarly to BP. Without using any post-processing, Astra achieves higher thresholds and better Logical Error Rates (LER) compared to BPOSD, both for surface codes trained up to distance 11 and Bivariate Bicycle (BB) codes trained up to distance 18. Moreover, we can successfully extrapolate the decoding functionality: we decode high distances (surface code up to distance 25 and BB code up to distance 34) by using decoders trained on lower distances. Extrapolated Astra achieves better LER than BPOSD for BB codes. Astra(+OSD) achieves orders of magnitude lower logical error rates for BB codes compared to BP(+OSD).

Abstract Image

QLDPC码可扩展解码的机器学习消息传递
我们提出了Astra,一个新颖的可扩展的解码器,使用图神经网络。一般来说,量子低密度奇偶校验(QLDPC)解码基于信念传播(BP,一种消息传递的变体),并且需要时间密集的后处理方法,如有序统计解码(OSD)。我们的解码器在坦纳图上工作,类似于BP。在不使用任何后处理的情况下,与BPOSD相比,Astra在训练距离为11的表面代码和训练距离为18的双变量自行车(BB)代码中都实现了更高的阈值和更好的逻辑错误率(LER)。此外,我们可以成功地推断解码功能:我们通过使用在较低距离上训练的解码器解码高距离(表面代码到距离25和BB代码到距离34)。对于BB代码,外推Astra实现了比BPOSD更好的LER。与BP(+OSD)相比,Astra(+OSD)实现了低数量级的BB代码逻辑错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信