Wei-jie Fu, Jan M. Pawlowski, Robert D. Pisarski, Fabian Rennecke, Rui Wen, Shi Yin
{"title":"QCD moat regime and its real-time properties","authors":"Wei-jie Fu, Jan M. Pawlowski, Robert D. Pisarski, Fabian Rennecke, Rui Wen, Shi Yin","doi":"10.1103/physrevd.111.094026","DOIUrl":null,"url":null,"abstract":"Dense quantum chromodynamics (QCD) matter may exhibit crystalline phases. Their existence is reflected in a moat regime, where mesonic correlations feature spatial modulations. We study the real-time properties of pions at finite temperature and density in QCD in order to elucidate the nature of this regime. We show that the moat regime arises from particle-hole-like fluctuations near the Fermi surface. This gives rise to a characteristic peak in the spectral function of the pion at nonzero spacelike momentum. This peak can be interpreted as a new quasi particle, the moaton. In addition, our framework also allows us to directly test the stability of the homogeneous chiral phase against the formation of an inhomogeneous condensate in QCD. We find that an inhomogeneous instability is highly unlikely for baryon chemical potentials μ</a:mi></a:mrow>B</a:mi></a:mrow></a:msub>≤</a:mo>630</a:mn></a:mtext></a:mtext>MeV</a:mi></a:mrow></a:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"13 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.094026","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Dense quantum chromodynamics (QCD) matter may exhibit crystalline phases. Their existence is reflected in a moat regime, where mesonic correlations feature spatial modulations. We study the real-time properties of pions at finite temperature and density in QCD in order to elucidate the nature of this regime. We show that the moat regime arises from particle-hole-like fluctuations near the Fermi surface. This gives rise to a characteristic peak in the spectral function of the pion at nonzero spacelike momentum. This peak can be interpreted as a new quasi particle, the moaton. In addition, our framework also allows us to directly test the stability of the homogeneous chiral phase against the formation of an inhomogeneous condensate in QCD. We find that an inhomogeneous instability is highly unlikely for baryon chemical potentials μB≤630MeV. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.