Optical identification and anti-counterfeiting based on plasmonic core–shell nanoparticles with Fano resonance

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Nga Vu, Mohamed Farhat, Chien-Hao Liu, Pai-Yen Chen
{"title":"Optical identification and anti-counterfeiting based on plasmonic core–shell nanoparticles with Fano resonance","authors":"Nga Vu, Mohamed Farhat, Chien-Hao Liu, Pai-Yen Chen","doi":"10.1063/5.0262965","DOIUrl":null,"url":null,"abstract":"Fano resonance with an asymmetric and ultrasharp resonant line shape has been extensively studied in various light scattering scenes, unlocking several applications for sensing, information processing, and optical identification. Fano resonance appearing in multilayered nanoparticles (NPs) is particularly intriguing as its sharp and comb-like resonant line shape may enable optical identification at the nanoscale. We herein propose the concept of the optical physical unclonable function (PUF) based on the scattering responses of core–shell (plasmonic-dielectric) NPs. Specifically, the sharp, asymmetric spectral responses near the Fano resonance frequency, which are highly sensitive to perturbations (e.g., nanomanufacturing imperfections), can be exploited as a unique electromagnetic fingerprint for PUF-based identification and anti-counterfeiting applications. Here, we theoretically and statistically demonstrate that scattering from Fano-resonant multilayered NPs can be regarded as a perfect entropy source for the generation of PUF encryption keys, with outstanding performance in terms of uniqueness, randomness, encoding capacity, and NIST randomness test results. The proposed optical PUF opens pathways to implement nano-tags for optical identification, authentication, and anti-counterfeiting applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"29 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0262965","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fano resonance with an asymmetric and ultrasharp resonant line shape has been extensively studied in various light scattering scenes, unlocking several applications for sensing, information processing, and optical identification. Fano resonance appearing in multilayered nanoparticles (NPs) is particularly intriguing as its sharp and comb-like resonant line shape may enable optical identification at the nanoscale. We herein propose the concept of the optical physical unclonable function (PUF) based on the scattering responses of core–shell (plasmonic-dielectric) NPs. Specifically, the sharp, asymmetric spectral responses near the Fano resonance frequency, which are highly sensitive to perturbations (e.g., nanomanufacturing imperfections), can be exploited as a unique electromagnetic fingerprint for PUF-based identification and anti-counterfeiting applications. Here, we theoretically and statistically demonstrate that scattering from Fano-resonant multilayered NPs can be regarded as a perfect entropy source for the generation of PUF encryption keys, with outstanding performance in terms of uniqueness, randomness, encoding capacity, and NIST randomness test results. The proposed optical PUF opens pathways to implement nano-tags for optical identification, authentication, and anti-counterfeiting applications.
基于范诺共振等离子体核壳纳米粒子的光学识别与防伪
具有非对称和超尖锐共振线形状的法诺共振在各种光散射场景中得到了广泛的研究,在传感、信息处理和光学识别方面得到了广泛的应用。在多层纳米颗粒(NPs)中出现的法诺共振特别有趣,因为其尖锐的梳状共振线形状可能使纳米尺度上的光学识别成为可能。本文提出了基于核-壳(等离子体-介电)NPs散射响应的光学物理不可克隆函数(PUF)的概念。具体来说,Fano共振频率附近尖锐的不对称光谱响应对扰动(例如纳米制造缺陷)高度敏感,可以作为基于puf的识别和防伪应用的独特电磁指纹。本文从理论上和统计上证明了fano共振多层NPs的散射可以被视为生成PUF加密密钥的完美熵源,在唯一性、随机性、编码容量和NIST随机性测试结果方面具有出色的性能。提出的光学PUF为实现用于光学识别、认证和防伪应用的纳米标签开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信