Bingnan Song , Wei Chen , Ying Pu , Weiquan Li , Zhengshuo Zhan , Haisheng Fang , Yang Lei
{"title":"Manipulating electrochemical phosphate recovery from acidic wastewater for synthesizing LiFePO4/C cathode material","authors":"Bingnan Song , Wei Chen , Ying Pu , Weiquan Li , Zhengshuo Zhan , Haisheng Fang , Yang Lei","doi":"10.1016/j.watres.2025.123839","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphorus (P) recovery from wastewater offers a sustainable solution for mitigating pollution and securing resources for applications like lithium-ion batteries, where ferric phosphate is a valuable precursor. This study evaluates iron electrolysis for P removal and recovery from acidic wastewater with high phosphate concentrations and medium Ca²⁺ levels. The results suggested that effective P removal and high-purity iron phosphate production can be achieved by varying initial pH, current density, and oxidation conditions. Importantly, slow Fe release rates (0.02–0.04 mmol L⁻¹ min⁻¹) favored ferric phosphate formation (71%–77% removal), while faster rates (0.16–0.46 mmol L⁻¹ min⁻¹) predominantly produced vivianite (∼ 65% removal). In addition, air flush can enhance dissolved oxygen flux, achieving 89% P removal under rapid Fe release but with mixed products. H₂O₂ addition improved <em>in situ</em> Fe(II) oxidation, achieving 92% P removal and purer ferric phosphate. Compared to chemical precipitation, which required pH adjustment and suffered from Ca co-precipitation, iron electrolysis produced purer ferric phosphate directly, without pH pre-adjustment. The recovered ferric phosphate showed excellent potential as a precursor for high-performance LiFePO₄/C cathode material. These findings position iron electrolysis as a promising approach for sustainable P recovery and resource valorization from wastewater.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123839"},"PeriodicalIF":11.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004313542500747X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) recovery from wastewater offers a sustainable solution for mitigating pollution and securing resources for applications like lithium-ion batteries, where ferric phosphate is a valuable precursor. This study evaluates iron electrolysis for P removal and recovery from acidic wastewater with high phosphate concentrations and medium Ca²⁺ levels. The results suggested that effective P removal and high-purity iron phosphate production can be achieved by varying initial pH, current density, and oxidation conditions. Importantly, slow Fe release rates (0.02–0.04 mmol L⁻¹ min⁻¹) favored ferric phosphate formation (71%–77% removal), while faster rates (0.16–0.46 mmol L⁻¹ min⁻¹) predominantly produced vivianite (∼ 65% removal). In addition, air flush can enhance dissolved oxygen flux, achieving 89% P removal under rapid Fe release but with mixed products. H₂O₂ addition improved in situ Fe(II) oxidation, achieving 92% P removal and purer ferric phosphate. Compared to chemical precipitation, which required pH adjustment and suffered from Ca co-precipitation, iron electrolysis produced purer ferric phosphate directly, without pH pre-adjustment. The recovered ferric phosphate showed excellent potential as a precursor for high-performance LiFePO₄/C cathode material. These findings position iron electrolysis as a promising approach for sustainable P recovery and resource valorization from wastewater.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.