Peng Xiao, Dan Shen, Hong Tian, Bin Dou, Jun Zheng, Alessandro Romagnoli, Lizhong Yang
{"title":"Effect of Cyclic Heat Treatment on Transport Properties of Hot Dry Rock","authors":"Peng Xiao, Dan Shen, Hong Tian, Bin Dou, Jun Zheng, Alessandro Romagnoli, Lizhong Yang","doi":"10.1007/s11053-025-10497-8","DOIUrl":null,"url":null,"abstract":"<p>Hot dry rock undergoes cyclic temperature variation during an enhanced geothermal system (EGS) operation, resulting in variations in reservoir rock’s transport properties and subsequently influencing the heat extraction efficiency of EGS. Therefore, the subject of this study was to systematically investigate the effect of cyclic heat treatment on the transport properties of granite, commonly employed in EGS, through the analysis of P-wave velocity, density, and scanning electron microscopy images. Besides, the effect of changes in the granite transport properties on EGS operation was also comprehensively discussed. The results indicated that the cyclic heat treatment led to an increase in granite permeability and a reduction in thermal conductivity. These changes primarily occurred due to the initiation and propagation of microcracks within the granite. Notably, higher-temperature heat treatments exhibited a more pronounced impact on granite properties. Additionally, a significant shift in the granite properties was observed within 450–550 °C, serving as a threshold temperature in this study. Due to the Kaiser memory effect and the blocking effect of the pre-microcrack on the subsequent microcrack, the effect of heat treatment on the properties of granite mainly came from the first heat treatment. Finally, the relationship models between heat treatment temperature and transport properties damage factors were obtained by fitting literature data.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"14 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10497-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hot dry rock undergoes cyclic temperature variation during an enhanced geothermal system (EGS) operation, resulting in variations in reservoir rock’s transport properties and subsequently influencing the heat extraction efficiency of EGS. Therefore, the subject of this study was to systematically investigate the effect of cyclic heat treatment on the transport properties of granite, commonly employed in EGS, through the analysis of P-wave velocity, density, and scanning electron microscopy images. Besides, the effect of changes in the granite transport properties on EGS operation was also comprehensively discussed. The results indicated that the cyclic heat treatment led to an increase in granite permeability and a reduction in thermal conductivity. These changes primarily occurred due to the initiation and propagation of microcracks within the granite. Notably, higher-temperature heat treatments exhibited a more pronounced impact on granite properties. Additionally, a significant shift in the granite properties was observed within 450–550 °C, serving as a threshold temperature in this study. Due to the Kaiser memory effect and the blocking effect of the pre-microcrack on the subsequent microcrack, the effect of heat treatment on the properties of granite mainly came from the first heat treatment. Finally, the relationship models between heat treatment temperature and transport properties damage factors were obtained by fitting literature data.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.