Semistable representations as limits of crystalline representations

IF 0.9 1区 数学 Q2 MATHEMATICS
Anand Chitrao, Eknath Ghate, Seidai Yasuda
{"title":"Semistable representations as limits of crystalline representations","authors":"Anand Chitrao, Eknath Ghate, Seidai Yasuda","doi":"10.2140/ant.2025.19.1049","DOIUrl":null,"url":null,"abstract":"<p>We construct an explicit sequence <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>V</mi> </mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></math> of crystalline representations of exceptional weights converging to a given irreducible two-dimensional semistable representation <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>V</mi> </mrow><mrow><mi>k</mi><mo>,</mo><mi mathvariant=\"bold-script\">ℒ</mi></mrow></msub></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Gal</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>ℚ</mi> </mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></math>/<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. The convergence takes place in the blow-up space of two-dimensional trianguline representations studied by Colmez and Chenevier. The process of blow-up is described in detail in the rigid-analytic setting and may be of independent interest. Also, we recover a formula of Stevens expressing the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℒ</mi></math>-invariant as a logarithmic derivative. </p><p> Our result can be used to compute the reduction of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>V</mi> </mrow><mrow><mi>k</mi><mo>,</mo><mi mathvariant=\"bold-script\">ℒ</mi></mrow></msub></math> in terms of the reductions of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>V</mi> </mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></math>. For instance, using the zig-zag conjecture we recover (resp. extend) the work of Breuil and Mézard and Guerberoff and Park computing the reductions of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>V</mi> </mrow><mrow><mi>k</mi><mo>,</mo><mi mathvariant=\"bold-script\">ℒ</mi></mrow></msub></math> for weights <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> at most <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>−</mo> <mn>1</mn></math> (resp. <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>+</mo> <mn>1</mn><mo stretchy=\"false\">)</mo><mo>,</mo></math> at least on the inertia subgroup. In the cases where zig-zag is known, we are further able to obtain some new information about the reductions for small odd weights. </p><p> In the cases where zig-zag is known, we are further able to obtain some new information about the reductions for small odd weights. Finally, we explain some apparent violations to local constancy in the weight of the reductions of crystalline representations of small weight. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"6 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1049","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct an explicit sequence V kn,an of crystalline representations of exceptional weights converging to a given irreducible two-dimensional semistable representation V k, of Gal ( ¯p/p). The convergence takes place in the blow-up space of two-dimensional trianguline representations studied by Colmez and Chenevier. The process of blow-up is described in detail in the rigid-analytic setting and may be of independent interest. Also, we recover a formula of Stevens expressing the -invariant as a logarithmic derivative.

Our result can be used to compute the reduction of V k, in terms of the reductions of the V kn,an. For instance, using the zig-zag conjecture we recover (resp. extend) the work of Breuil and Mézard and Guerberoff and Park computing the reductions of the V k, for weights k at most p 1 (resp. p + 1), at least on the inertia subgroup. In the cases where zig-zag is known, we are further able to obtain some new information about the reductions for small odd weights.

In the cases where zig-zag is known, we are further able to obtain some new information about the reductions for small odd weights. Finally, we explain some apparent violations to local constancy in the weight of the reductions of crystalline representations of small weight.

半稳定表征是晶体表征的极限
我们构造了一个显式序列V kn,一个特殊权值的结晶表示,它收敛于一个给定的不可约二维半稳定表示V k,∑(Gal²(π¯p/ π))。这种收敛发生在Colmez和Chenevier研究的二维三角形表示的膨胀空间中。爆破过程在刚性分析环境中有详细的描述,可能是独立的兴趣。同时,我们也恢复了一个用对数导数表示函数的公式。我们的结果可以用V kn和an的约简来计算V k, h的约简。例如,使用z -z猜想,我们恢复(p。扩展了Breuil和msamzard, Guerberoff和Park计算vk,∑的约简的工作。P + 1),至少在惯性子群上。在已知之字形的情况下,我们进一步能够获得一些关于小奇权的约简的新信息。在已知之字形的情况下,我们进一步能够获得一些关于小奇权的约简的新信息。最后,我们解释了一些明显违反局部恒常性的小重量晶体表征还原的重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信