{"title":"Squeezing Full-shape Dynamical Dark Energy Constraints with Galaxy Alignments","authors":"Junsup Shim, Teppei Okumura and Atsushi Taruya","doi":"10.3847/2041-8213/add1dd","DOIUrl":null,"url":null,"abstract":"Recent 2σ–4σ deviations from the cosmological constant suggest that dark energy (DE) may be dynamical, based on baryon acoustic oscillations and full-shape galaxy clustering (FS GC) analyses. This calls for even tighter DE constraints to narrow down its true nature. In this Letter, we explore how galaxy intrinsic alignments (IA) can enhance the FS GC–based DE constraints, using Fisher forecasts on various extensions of dynamical DE models, including scenarios with curvature, massive neutrinos, and modified gravity. Incorporating IA improves the DE figure of merit by 42%–57% and tightens the primordial power spectrum amplitude constraints by 17%–19%. Our findings highlight IA’s potential as a valuable cosmological probe complementary to GC.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/add1dd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent 2σ–4σ deviations from the cosmological constant suggest that dark energy (DE) may be dynamical, based on baryon acoustic oscillations and full-shape galaxy clustering (FS GC) analyses. This calls for even tighter DE constraints to narrow down its true nature. In this Letter, we explore how galaxy intrinsic alignments (IA) can enhance the FS GC–based DE constraints, using Fisher forecasts on various extensions of dynamical DE models, including scenarios with curvature, massive neutrinos, and modified gravity. Incorporating IA improves the DE figure of merit by 42%–57% and tightens the primordial power spectrum amplitude constraints by 17%–19%. Our findings highlight IA’s potential as a valuable cosmological probe complementary to GC.