Charge Transfer from Perovskite Quantum Dots to Multifunctional Ligands with Tethered Molecular Species

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mariam Kurashvili, Lena S. Stickel, Jordi Llusar, Christian Wilhelm, Fabian Felixberger, Ivana Ivanović-Burmazović, Ivan Infante, Jochen Feldmann, Quinten A. Akkerman
{"title":"Charge Transfer from Perovskite Quantum Dots to Multifunctional Ligands with Tethered Molecular Species","authors":"Mariam Kurashvili, Lena S. Stickel, Jordi Llusar, Christian Wilhelm, Fabian Felixberger, Ivana Ivanović-Burmazović, Ivan Infante, Jochen Feldmann, Quinten A. Akkerman","doi":"10.1021/acsenergylett.5c00881","DOIUrl":null,"url":null,"abstract":"Perovskite quantum dots (pQDs) are promising materials for optoelectronic and photocatalytic applications due to their unique optical properties. To enhance charge carrier extraction or injection, donor/acceptor molecules can be tethered to the pQD. These molecules must strongly bind to the ionic surfaces of pQDs without compromising colloidal stability. This is achieved by using multifunctional ligands containing a quaternary ammonium binding group for strong pQD surface attachment, a long tail group for colloidal stability, and a functional group near the pQD surface. Such pQDs with ferrocene-functionalized ligands show fast photoexcited hole transfer with near-unity efficiency. Density functional theory calculations reveal how ferrocene’s molecular structure reorganizes following hole transfer, affecting its charge separation efficiency. This approach can also be extended to photoexcited electron and energy transfer processes with pQDs. Therefore, this strategy offers a blueprint for creating efficient pQD–molecular hybrids for applications like photocatalysis.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"25 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00881","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite quantum dots (pQDs) are promising materials for optoelectronic and photocatalytic applications due to their unique optical properties. To enhance charge carrier extraction or injection, donor/acceptor molecules can be tethered to the pQD. These molecules must strongly bind to the ionic surfaces of pQDs without compromising colloidal stability. This is achieved by using multifunctional ligands containing a quaternary ammonium binding group for strong pQD surface attachment, a long tail group for colloidal stability, and a functional group near the pQD surface. Such pQDs with ferrocene-functionalized ligands show fast photoexcited hole transfer with near-unity efficiency. Density functional theory calculations reveal how ferrocene’s molecular structure reorganizes following hole transfer, affecting its charge separation efficiency. This approach can also be extended to photoexcited electron and energy transfer processes with pQDs. Therefore, this strategy offers a blueprint for creating efficient pQD–molecular hybrids for applications like photocatalysis.

Abstract Image

钙钛矿量子点与系链分子的多功能配体之间的电荷转移
钙钛矿量子点(pQDs)由于其独特的光学性质,在光电子和光催化领域具有广阔的应用前景。为了增强电荷载流子的提取或注射,可以将供体/受体分子拴在pQD上。这些分子必须在不影响胶体稳定性的情况下与pQDs的离子表面紧密结合。这是通过使用多功能配体来实现的,这些配体含有季铵结合基(用于强pQD表面附着)、长尾基(用于胶体稳定性)和靠近pQD表面的官能团。这种具有二茂铁功能化配体的pqd具有接近单位效率的快速光激发空穴转移。密度泛函理论计算揭示了二茂铁分子结构在空穴转移后如何重组,从而影响其电荷分离效率。这种方法也可以扩展到光激发电子和能量传递过程与pQDs。因此,这一策略为创建高效的pqd -分子杂交体提供了蓝图,用于光催化等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信