Ye Ming Qing, Jiao Liu, Zhaoyan Yang, Yue Gou, Liang Wei Wu, Jun Wu
{"title":"Dynamic modulation of dual-band nonreciprocal radiation in a graphene–Weyl semimetal plasmonic structure","authors":"Ye Ming Qing, Jiao Liu, Zhaoyan Yang, Yue Gou, Liang Wei Wu, Jun Wu","doi":"10.1063/5.0270822","DOIUrl":null,"url":null,"abstract":"We introduce and develop a hybrid structure combining graphene and Weyl semimetal that is capable of achieving dynamically adjustable dual-band nonreciprocal radiation. The results reveal that the nonreciprocal radiation can be attributed to the synergistic interaction between resonance mode excitation and the unique properties of Weyl materials, with the electric field distribution providing further insights into the graphene plasmon modes involved. By exploiting the resonant characteristics of graphene plasmons, we demonstrate that strong nonreciprocal radiation can be effectively regulated through adjusting the grating's geometric parameters, while maintaining robustness over a wide range. Notably, substantial dynamic tuning of the resonant wavelength for nonreciprocal radiation is achievable by modulating the Fermi level of graphene. Our research results offer promising prospects for the development of complex energy harvesting and conversion systems within advanced thermal frameworks.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"6 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0270822","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce and develop a hybrid structure combining graphene and Weyl semimetal that is capable of achieving dynamically adjustable dual-band nonreciprocal radiation. The results reveal that the nonreciprocal radiation can be attributed to the synergistic interaction between resonance mode excitation and the unique properties of Weyl materials, with the electric field distribution providing further insights into the graphene plasmon modes involved. By exploiting the resonant characteristics of graphene plasmons, we demonstrate that strong nonreciprocal radiation can be effectively regulated through adjusting the grating's geometric parameters, while maintaining robustness over a wide range. Notably, substantial dynamic tuning of the resonant wavelength for nonreciprocal radiation is achievable by modulating the Fermi level of graphene. Our research results offer promising prospects for the development of complex energy harvesting and conversion systems within advanced thermal frameworks.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.