Jenna D. Krugler, Phred M. Benham, Rauri C. K. Bowie
{"title":"Shared temporal increases in bill size among songbirds of the San Francisco Bay Area provide evidence for different seasonal selective pressures","authors":"Jenna D. Krugler, Phred M. Benham, Rauri C. K. Bowie","doi":"10.1002/ecog.07494","DOIUrl":null,"url":null,"abstract":"Museum specimens offer a unique and powerful tool for understanding the impact of anthropogenic change on populations over time. Morphological traits can be impacted by many different environmental variables that are difficult to separate from one another as potential driving factors. Comparative analyses among similar species jointly experiencing change in the same environmental variables can help pinpoint the selective pressures driving temporal morphological change. We assessed temporal change in bill size, tarsus length, and body size between six species of songbirds from the San Francisco Bay Area over the past 150 years. Wing length, as a proxy for body size, exhibited idiosyncratic temporal changes among species. In contrast, we found a significant increase in bill surface area across all but one species. Quantile regression analyses on bill size variation additionally revealed that temporal increases over the past century have been driven by increases in the largest bill sizes in some species, but increases in the smallest bills over time in others. The climate variables best explaining temporal change in bill size also differed among species, with some species responding more to changing summer variables (e.g. maximum annual temperature) and others in response to a changing winter climate. These results together suggest that different sympatric, resident bird species may be experiencing temporal morphological change in response to selective pressures experienced at different seasons. Our finding provides support for the season of critical thermal stress hypothesis that suggests variation in functional traits will be shaped by the season that imposes the greatest selective force on a population. Overall, this study has important implications for future research on the role of bills in thermoregulation and for conservation efforts based on the adaptive capacity of birds to respond to climate change.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"41 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecog.07494","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Museum specimens offer a unique and powerful tool for understanding the impact of anthropogenic change on populations over time. Morphological traits can be impacted by many different environmental variables that are difficult to separate from one another as potential driving factors. Comparative analyses among similar species jointly experiencing change in the same environmental variables can help pinpoint the selective pressures driving temporal morphological change. We assessed temporal change in bill size, tarsus length, and body size between six species of songbirds from the San Francisco Bay Area over the past 150 years. Wing length, as a proxy for body size, exhibited idiosyncratic temporal changes among species. In contrast, we found a significant increase in bill surface area across all but one species. Quantile regression analyses on bill size variation additionally revealed that temporal increases over the past century have been driven by increases in the largest bill sizes in some species, but increases in the smallest bills over time in others. The climate variables best explaining temporal change in bill size also differed among species, with some species responding more to changing summer variables (e.g. maximum annual temperature) and others in response to a changing winter climate. These results together suggest that different sympatric, resident bird species may be experiencing temporal morphological change in response to selective pressures experienced at different seasons. Our finding provides support for the season of critical thermal stress hypothesis that suggests variation in functional traits will be shaped by the season that imposes the greatest selective force on a population. Overall, this study has important implications for future research on the role of bills in thermoregulation and for conservation efforts based on the adaptive capacity of birds to respond to climate change.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.