Kiran Kumar Garlapati, Shuvajit Ghosh, Jyotirekha Dutta, Bharat B. Panigrahi, Surendra K. Martha
{"title":"Low-Temperature Synthesis of Battery Grade Graphite: Mechanistic Insights, Electrochemical Performance, and Techno-Economic Prospects","authors":"Kiran Kumar Garlapati, Shuvajit Ghosh, Jyotirekha Dutta, Bharat B. Panigrahi, Surendra K. Martha","doi":"10.1002/aenm.202500501","DOIUrl":null,"url":null,"abstract":"Graphite is an irreplaceable anode for Lithium-ion batteries (LIBs) at status quo, and its demand will soar amid the supply chain and sustainability concerns of natural graphite (NG) and synthetic graphite (SG). Herein, LIB-grade graphite is produced using a less energy-intensive catalytic graphitization process. This work explores the catalytic graphite (CTG) growth mechanism, the impact of graphitization conditions on the degree of graphitization, aspects of developing high-rate graphite anodes, upscaling strategies, and techno-economic prospects. Operando thermal X-ray diffractograms reveal that the CTG forms through carbon dissoluton in nickel and its subsequent segregation as graphite and nickel. CTG synthesized between 1100 and 1500 °C shows porous flaky morphology, with higher temperatures favoring superior graphitization and carbon purity. The growth of graphitic domains governs the electrochemical performance of CTG. CTG 1100 shows hard carbon-like Li<sup>+</sup> ion storage, while CTG 1300 and CTG 1500 form graphite intercalation compounds owing to the larger graphitic crystallites. Pitch-derived soft carbon coating onto CTG 1500 enhances its high-rate capability compared to commercial graphite due to its intrinsic porosity. Improved electrochemical performance establishes CTG as a better alternative to NG and SG, and detailed techno-economic analysis affirms its scalability prospects.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"53 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500501","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphite is an irreplaceable anode for Lithium-ion batteries (LIBs) at status quo, and its demand will soar amid the supply chain and sustainability concerns of natural graphite (NG) and synthetic graphite (SG). Herein, LIB-grade graphite is produced using a less energy-intensive catalytic graphitization process. This work explores the catalytic graphite (CTG) growth mechanism, the impact of graphitization conditions on the degree of graphitization, aspects of developing high-rate graphite anodes, upscaling strategies, and techno-economic prospects. Operando thermal X-ray diffractograms reveal that the CTG forms through carbon dissoluton in nickel and its subsequent segregation as graphite and nickel. CTG synthesized between 1100 and 1500 °C shows porous flaky morphology, with higher temperatures favoring superior graphitization and carbon purity. The growth of graphitic domains governs the electrochemical performance of CTG. CTG 1100 shows hard carbon-like Li+ ion storage, while CTG 1300 and CTG 1500 form graphite intercalation compounds owing to the larger graphitic crystallites. Pitch-derived soft carbon coating onto CTG 1500 enhances its high-rate capability compared to commercial graphite due to its intrinsic porosity. Improved electrochemical performance establishes CTG as a better alternative to NG and SG, and detailed techno-economic analysis affirms its scalability prospects.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.