Regulating obesity-induced osteoarthritis by targeting p53-FOXO3, osteoclast ferroptosis, and mesenchymal stem cell adipogenesis

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chen Zhao, Keyu Kong, Pengcheng Liu, Xuzhuo Chen, Kewei Rong, Pu Zhang, Lei Wang, Xiaoqing Wang
{"title":"Regulating obesity-induced osteoarthritis by targeting p53-FOXO3, osteoclast ferroptosis, and mesenchymal stem cell adipogenesis","authors":"Chen Zhao, Keyu Kong, Pengcheng Liu, Xuzhuo Chen, Kewei Rong, Pu Zhang, Lei Wang, Xiaoqing Wang","doi":"10.1038/s41467-025-59883-z","DOIUrl":null,"url":null,"abstract":"<p>Obesity-related osteoarthritis (OA) and the molecular mechanisms governing multiple joint structural changes that occur with obesity are not well understood. This study investigated the progression of obesity in mice and validated the results using human joint samples post-arthroplasty. The results show that obesity is associated with the degeneration of the cartilage layer and abnormal remodeling of the subchondral bone layer, and this occurs alongside aging and DNA damage in chondrocytes, osteoclasts, and stem cells. Regulation of p53-FOXO3 gene loop expression in response to DNA damage effectively inhibits chondrocyte apoptosis, catabolism, and excessive osteoclast differentiation, while the intra-articular delivery of a lentivirus expressing FOXO3 to mouse joints alleviates the progression of OA. The excessive differentiation of subchondral bone marrow osteoclasts is ferroptosis-dependent and driven by the senescence-associated secretory phenotype. The results have identified multiple potential targets for future research into the progression of obesity-related OA.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":"4532"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59883-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity-related osteoarthritis (OA) and the molecular mechanisms governing multiple joint structural changes that occur with obesity are not well understood. This study investigated the progression of obesity in mice and validated the results using human joint samples post-arthroplasty. The results show that obesity is associated with the degeneration of the cartilage layer and abnormal remodeling of the subchondral bone layer, and this occurs alongside aging and DNA damage in chondrocytes, osteoclasts, and stem cells. Regulation of p53-FOXO3 gene loop expression in response to DNA damage effectively inhibits chondrocyte apoptosis, catabolism, and excessive osteoclast differentiation, while the intra-articular delivery of a lentivirus expressing FOXO3 to mouse joints alleviates the progression of OA. The excessive differentiation of subchondral bone marrow osteoclasts is ferroptosis-dependent and driven by the senescence-associated secretory phenotype. The results have identified multiple potential targets for future research into the progression of obesity-related OA.

Abstract Image

通过p53-FOXO3、破骨细胞铁凋亡和间充质干细胞脂肪生成调控肥胖诱导的骨关节炎
肥胖相关性骨关节炎(OA)和控制肥胖发生的多个关节结构变化的分子机制尚不清楚。本研究调查了小鼠肥胖的进展,并利用关节置换术后的人类关节样本验证了结果。结果表明,肥胖与软骨层退化和软骨下骨层异常重塑有关,这与软骨细胞、破骨细胞和干细胞的衰老和DNA损伤同时发生。p53-FOXO3基因环表达对DNA损伤的响应可有效抑制软骨细胞凋亡、分解代谢和过度破骨细胞分化,而表达FOXO3的慢病毒在小鼠关节内传递可缓解OA的进展。软骨下骨髓破骨细胞的过度分化依赖于铁凋亡,并由衰老相关的分泌表型驱动。这些结果为未来研究肥胖相关OA的进展确定了多个潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信