Lin Nan, Andrea Mancini, Thomas Weber, Geok Leng Seah, Emiliano Cortés, Andreas Tittl, Stefan A. Maier
{"title":"Angular dispersion suppression in deeply subwavelength phonon polariton bound states in the continuum metasurfaces","authors":"Lin Nan, Andrea Mancini, Thomas Weber, Geok Leng Seah, Emiliano Cortés, Andreas Tittl, Stefan A. Maier","doi":"10.1038/s41566-025-01670-9","DOIUrl":null,"url":null,"abstract":"<p>Quasi-bound states in the continuum (qBICs) achieved through symmetry breaking in photonic metasurfaces are a powerful approach for engineering resonances with high quality factors and tunability. However, miniaturization of these devices is limited as the in-plane unit-cell size typically scales linearly with the resonant wavelength. By contrast, polariton resonators can be deeply subwavelength, offering a promising solution for achieving compact devices. Here we demonstrate that low-loss mid-infrared surface phonon polaritons enable metasurfaces supporting qBICs with unit-cell volumes up to 10<sup>5</sup> times smaller than the free-space volume <span>\\(\\lambda_{0}^3\\)</span>. Using 100-nm-thick free-standing silicon carbide membranes, we achieve highly confined qBIC states with exceptional robustness against incident-angle variations, a feature unique among qBIC systems. This absence of angular dispersion enables mid-infrared vibrational sensing of thin, weakly absorbing molecular layers using a reflective objective, a method that typically degrades resonance quality in standard qBIC metasurfaces. We introduce surface-phonon-polariton-based qBICs as a platform for ultraconfined nanophotonic systems, advancing the miniaturization of mid-infrared sensors and devices for thermal radiation engineering.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"53 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01670-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-bound states in the continuum (qBICs) achieved through symmetry breaking in photonic metasurfaces are a powerful approach for engineering resonances with high quality factors and tunability. However, miniaturization of these devices is limited as the in-plane unit-cell size typically scales linearly with the resonant wavelength. By contrast, polariton resonators can be deeply subwavelength, offering a promising solution for achieving compact devices. Here we demonstrate that low-loss mid-infrared surface phonon polaritons enable metasurfaces supporting qBICs with unit-cell volumes up to 105 times smaller than the free-space volume \(\lambda_{0}^3\). Using 100-nm-thick free-standing silicon carbide membranes, we achieve highly confined qBIC states with exceptional robustness against incident-angle variations, a feature unique among qBIC systems. This absence of angular dispersion enables mid-infrared vibrational sensing of thin, weakly absorbing molecular layers using a reflective objective, a method that typically degrades resonance quality in standard qBIC metasurfaces. We introduce surface-phonon-polariton-based qBICs as a platform for ultraconfined nanophotonic systems, advancing the miniaturization of mid-infrared sensors and devices for thermal radiation engineering.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.