Lattice compressive strain-controlled electromagnetic wave absorption in TMDs by plasma-assisted rapid annealing

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-05-16 DOI:10.1016/j.matt.2025.102151
Jiaming Wen, Yiyang Liu, Shengchong Hui, Lechun Deng, Limin Zhang, Xiaomeng Fan, Qiang Chen, Xingmin Liu, Xiangcheng Li, Na Yan, Hongjing Wu
{"title":"Lattice compressive strain-controlled electromagnetic wave absorption in TMDs by plasma-assisted rapid annealing","authors":"Jiaming Wen, Yiyang Liu, Shengchong Hui, Lechun Deng, Limin Zhang, Xiaomeng Fan, Qiang Chen, Xingmin Liu, Xiangcheng Li, Na Yan, Hongjing Wu","doi":"10.1016/j.matt.2025.102151","DOIUrl":null,"url":null,"abstract":"The strain control of a transition metal dichalcogenide (TMD) absorber is an intriguing approach for tuning electromagnetic wave absorption properties. Moreover, efficient and lower-temperature methods are needed to modulate lattice strain. Here, we report an efficient approach to trigger the growth of MoO<sub>3</sub>@MoTe<sub>2(1−2<em>x</em>)</sub>S<sub>2<em>x</em></sub> via plasma-assisted relatively rapid annealing (PARA) at a ramp rate of 80°C/min up to 500°C. The high-energy particles and active radicals (·N) generated by plasma enhanced thermal interactions of annealing, together with the extrusion of polar chalcogen with larger radii and the construction of an electronic buffer layer with a shell-core structure modulating the lattice compressive strain. Benefiting from the tailored lattice strains along with the Te content increases in PARA-MoTe<sub>2(1−<em>X</em>)</sub>S<sub>2<em>X</em></sub>, the effective absorption bandwidth of PARA-MoTe<sub>1.5</sub>S<sub>0.5</sub> with a maximum strain of 1.15% reaches 9.01 GHz at a thickness of 2.92 mm, significantly outperforming the MoO<sub>3</sub> counterpart (0 GHz).","PeriodicalId":388,"journal":{"name":"Matter","volume":"76 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102151","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The strain control of a transition metal dichalcogenide (TMD) absorber is an intriguing approach for tuning electromagnetic wave absorption properties. Moreover, efficient and lower-temperature methods are needed to modulate lattice strain. Here, we report an efficient approach to trigger the growth of MoO3@MoTe2(1−2x)S2x via plasma-assisted relatively rapid annealing (PARA) at a ramp rate of 80°C/min up to 500°C. The high-energy particles and active radicals (·N) generated by plasma enhanced thermal interactions of annealing, together with the extrusion of polar chalcogen with larger radii and the construction of an electronic buffer layer with a shell-core structure modulating the lattice compressive strain. Benefiting from the tailored lattice strains along with the Te content increases in PARA-MoTe2(1−X)S2X, the effective absorption bandwidth of PARA-MoTe1.5S0.5 with a maximum strain of 1.15% reaches 9.01 GHz at a thickness of 2.92 mm, significantly outperforming the MoO3 counterpart (0 GHz).

Abstract Image

等离子体辅助快速退火中晶格压缩应变控制的tmd电磁波吸收
过渡金属二硫化物(TMD)吸收体的应变控制是一种调整电磁波吸收特性的有趣方法。此外,还需要有效和低温的方法来调制晶格应变。在这里,我们报告了一种通过等离子体辅助相对快速退火(PARA)以80°C/min至500°C的斜坡速率触发MoO3@MoTe2(1−2x)S2x生长的有效方法。等离子体产生的高能粒子和活性自由基(·N)增强了退火的热相互作用,同时挤压出半径更大的极性碳,并构建了具有调节晶格压缩应变的壳核结构的电子缓冲层。随着Te含量的增加,PARA-MoTe2(1−X)S2X中晶格应变的定制化,最大应变为1.15%的PARA-MoTe1.5S0.5在厚度为2.92 mm时的有效吸收带宽达到9.01 GHz,显著优于MoO3 (0 GHz)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信