Yanxing Li, Chuqiao Shi, Fan Zhang, Xiaohui Liu, Yuan Xue, Viet-Anh Ha, Qiang Gao, Chengye Dong, Yu-Chuan Lin, Luke N. Holtzman, Nicolás Morales-Durán, Hyunsue Kim, Yi Jiang, Madisen Holbrook, James Hone, Katayun Barmak, Joshua A. Robinson, Xiaoqin Li, Feliciano Giustino, Eslam Khalaf, Yimo Han, Chih-Kang Shih
{"title":"Robust supermoiré pattern in large-angle single-twist bilayers","authors":"Yanxing Li, Chuqiao Shi, Fan Zhang, Xiaohui Liu, Yuan Xue, Viet-Anh Ha, Qiang Gao, Chengye Dong, Yu-Chuan Lin, Luke N. Holtzman, Nicolás Morales-Durán, Hyunsue Kim, Yi Jiang, Madisen Holbrook, James Hone, Katayun Barmak, Joshua A. Robinson, Xiaoqin Li, Feliciano Giustino, Eslam Khalaf, Yimo Han, Chih-Kang Shih","doi":"10.1038/s41567-025-02914-9","DOIUrl":null,"url":null,"abstract":"<p>Forming long-wavelength moiré superlattices in van der Waals bilayers that have a small-angle twist between the two layers has been a key approach for creating moiré flat bands. However, for small twist angles, strong lattice reconstruction creates domain walls and other forms of disorder in the moiré pattern, posing considerable challenges for engineering such platforms. At large twist angles, the lattices are more rigid, but it is difficult to produce flat bands in shorter-wavelength moiré superlattices. Here we introduce an approach for tailoring robust supermoiré structures in bilayers of transition-metal dichalcogenides using only a single twist near a commensurate angle. Structurally, we show the spontaneous formation of a periodic arrangement of three inequivalent commensurate moiré stackings, where the angle deviation from the commensurate angle determines the periodicity. Electronically, we reveal a large set of van Hove singularities that indicate strong band hybridization, leading to flat bands near the valence band maximum. Our study extends the study of the interplay among band topology, quantum geometry and moiré superconductivity to the large twist angle regime.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"2 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02914-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Forming long-wavelength moiré superlattices in van der Waals bilayers that have a small-angle twist between the two layers has been a key approach for creating moiré flat bands. However, for small twist angles, strong lattice reconstruction creates domain walls and other forms of disorder in the moiré pattern, posing considerable challenges for engineering such platforms. At large twist angles, the lattices are more rigid, but it is difficult to produce flat bands in shorter-wavelength moiré superlattices. Here we introduce an approach for tailoring robust supermoiré structures in bilayers of transition-metal dichalcogenides using only a single twist near a commensurate angle. Structurally, we show the spontaneous formation of a periodic arrangement of three inequivalent commensurate moiré stackings, where the angle deviation from the commensurate angle determines the periodicity. Electronically, we reveal a large set of van Hove singularities that indicate strong band hybridization, leading to flat bands near the valence band maximum. Our study extends the study of the interplay among band topology, quantum geometry and moiré superconductivity to the large twist angle regime.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.