Robust supermoiré pattern in large-angle single-twist bilayers

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yanxing Li, Chuqiao Shi, Fan Zhang, Xiaohui Liu, Yuan Xue, Viet-Anh Ha, Qiang Gao, Chengye Dong, Yu-Chuan Lin, Luke N. Holtzman, Nicolás Morales-Durán, Hyunsue Kim, Yi Jiang, Madisen Holbrook, James Hone, Katayun Barmak, Joshua A. Robinson, Xiaoqin Li, Feliciano Giustino, Eslam Khalaf, Yimo Han, Chih-Kang Shih
{"title":"Robust supermoiré pattern in large-angle single-twist bilayers","authors":"Yanxing Li, Chuqiao Shi, Fan Zhang, Xiaohui Liu, Yuan Xue, Viet-Anh Ha, Qiang Gao, Chengye Dong, Yu-Chuan Lin, Luke N. Holtzman, Nicolás Morales-Durán, Hyunsue Kim, Yi Jiang, Madisen Holbrook, James Hone, Katayun Barmak, Joshua A. Robinson, Xiaoqin Li, Feliciano Giustino, Eslam Khalaf, Yimo Han, Chih-Kang Shih","doi":"10.1038/s41567-025-02914-9","DOIUrl":null,"url":null,"abstract":"<p>Forming long-wavelength moiré superlattices in van der Waals bilayers that have a small-angle twist between the two layers has been a key approach for creating moiré flat bands. However, for small twist angles, strong lattice reconstruction creates domain walls and other forms of disorder in the moiré pattern, posing considerable challenges for engineering such platforms. At large twist angles, the lattices are more rigid, but it is difficult to produce flat bands in shorter-wavelength moiré superlattices. Here we introduce an approach for tailoring robust supermoiré structures in bilayers of transition-metal dichalcogenides using only a single twist near a commensurate angle. Structurally, we show the spontaneous formation of a periodic arrangement of three inequivalent commensurate moiré stackings, where the angle deviation from the commensurate angle determines the periodicity. Electronically, we reveal a large set of van Hove singularities that indicate strong band hybridization, leading to flat bands near the valence band maximum. Our study extends the study of the interplay among band topology, quantum geometry and moiré superconductivity to the large twist angle regime.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"2 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02914-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Forming long-wavelength moiré superlattices in van der Waals bilayers that have a small-angle twist between the two layers has been a key approach for creating moiré flat bands. However, for small twist angles, strong lattice reconstruction creates domain walls and other forms of disorder in the moiré pattern, posing considerable challenges for engineering such platforms. At large twist angles, the lattices are more rigid, but it is difficult to produce flat bands in shorter-wavelength moiré superlattices. Here we introduce an approach for tailoring robust supermoiré structures in bilayers of transition-metal dichalcogenides using only a single twist near a commensurate angle. Structurally, we show the spontaneous formation of a periodic arrangement of three inequivalent commensurate moiré stackings, where the angle deviation from the commensurate angle determines the periodicity. Electronically, we reveal a large set of van Hove singularities that indicate strong band hybridization, leading to flat bands near the valence band maximum. Our study extends the study of the interplay among band topology, quantum geometry and moiré superconductivity to the large twist angle regime.

Abstract Image

大角度单捻双分子层的鲁棒超监视模式
在范德华双层中形成具有小角度扭转的长波莫尔条纹超晶格是制造莫尔条纹平带的关键方法。然而,对于较小的扭转角,强晶格重构会在波纹模式中产生畴壁和其他形式的无序,这对此类平台的工程设计提出了相当大的挑战。在大的扭转角下,晶格具有更强的刚性,但在短波长的莫尔维尔超晶格中很难产生平带。在这里,我们介绍了一种方法,以剪裁坚固的超结构,在过渡金属二硫族化合物双层只使用一个单一的扭转接近一个相称的角度。在结构上,我们展示了三个不相等的相称莫尔堆的周期性排列的自发形成,其中与相称角的角度偏差决定了周期性。电子上,我们发现了一组van Hove奇点,表明强能带杂交,导致价带最大值附近的平坦带。我们的研究将带拓扑、量子几何和摩尔超导电性之间相互作用的研究扩展到大扭角区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信