Ammonia Hydration in a Cu(II)-Pyrazolate Framework for Efficient Trace Capture

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Guang-Rui Si, Dr. Xiang-Jing Kong, Prof. Tao He, Jia-Teng Zhao, Prof. Lin-Hua Xie, Prof. Jian-Rong Li
{"title":"Ammonia Hydration in a Cu(II)-Pyrazolate Framework for Efficient Trace Capture","authors":"Dr. Guang-Rui Si,&nbsp;Dr. Xiang-Jing Kong,&nbsp;Prof. Tao He,&nbsp;Jia-Teng Zhao,&nbsp;Prof. Lin-Hua Xie,&nbsp;Prof. Jian-Rong Li","doi":"10.1002/anie.202507356","DOIUrl":null,"url":null,"abstract":"<p>Ammonia (NH<sub>3</sub>) emissions from industrial and agricultural activities pose severe environmental and health issues. Trace NH<sub>3</sub> capture typically relies on chemisorption at Lewis acid sites or physisorption on porous adsorbents but usually suffers from irreversible binding, energy-intensive regeneration, and structural degradation. In this work, for the first time, we demonstrate a new hydration pathway as a promising solution. In a Cu(II)-pyrazolate framework, BUT-64(H<sub>2</sub>O), the bridging water molecules between adjacent Cu(II) ions serve as Brønsted acid sites to hydrate ammonia, achieving a remarkable NH<sub>3</sub> packing density of 0.27 g cm<sup>−3</sup> at 0.1 kPa and an adsorption capacity of 1.51 mmol g<sup>−1</sup> for 1000 ppm NH<sub>3</sub> under 80% relative humidity, among the leading adsorbents. The reversible hydration mechanism combines enhanced NH<sub>3</sub> affinity with facile regeneration and mitigated moisture co-adsorption, overcoming the inherent trade-off. The remarkable alkaline stability of this material also highlights its potential as an energy-efficient sorbent for trace NH<sub>3</sub> capture.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 29","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia (NH3) emissions from industrial and agricultural activities pose severe environmental and health issues. Trace NH3 capture typically relies on chemisorption at Lewis acid sites or physisorption on porous adsorbents but usually suffers from irreversible binding, energy-intensive regeneration, and structural degradation. In this work, for the first time, we demonstrate a new hydration pathway as a promising solution. In a Cu(II)-pyrazolate framework, BUT-64(H2O), the bridging water molecules between adjacent Cu(II) ions serve as Brønsted acid sites to hydrate ammonia, achieving a remarkable NH3 packing density of 0.27 g cm−3 at 0.1 kPa and an adsorption capacity of 1.51 mmol g−1 for 1000 ppm NH3 under 80% relative humidity, among the leading adsorbents. The reversible hydration mechanism combines enhanced NH3 affinity with facile regeneration and mitigated moisture co-adsorption, overcoming the inherent trade-off. The remarkable alkaline stability of this material also highlights its potential as an energy-efficient sorbent for trace NH3 capture.

Abstract Image

氨水合作用于Cu(II)‐吡唑酸酯框架的高效痕量捕获
工业和农业活动产生的氨(NH3)排放构成严重的环境和健康问题。微量NH3的捕获通常依赖于Lewis酸位点的化学吸附或多孔吸附剂的物理吸附,但通常遭受不可逆结合,能量密集型再生和结构降解。在这项工作中,我们首次展示了一种新的水化途径作为一种有前途的解决方案。在Cu(II)‐吡唑酸酯骨架BUT‐64(H2O)中,相邻Cu(II)离子之间的桥接水分子作为br - nsted酸位点对氨进行水化,在0.1 kPa下NH3的填充密度为0.27 g cm-3,在80%相对湿度下对1000 ppm NH3的吸附量为1.51 mmol g - 1,是领先的吸附剂之一。可逆水化机制结合了增强的NH3亲和力和易于再生,减轻了水分的共吸附,克服了固有的权衡。这种材料的显著碱性稳定性也突出了其作为捕获微量NH3的节能吸附剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信