Michal Makowski, Wenzheng Ye, Dominik Kowal, Francesco Maddalena, Somnath Mahato, Yudhistira Tirtayasri Amrillah, Weronika Zajac, Marcin Eugeniusz Witkowski, Konrad Jacek Drozdowski, Nathaniel, Cuong Dang, Joanna Cybinska, Winicjusz Drozdowski, Ferry Anggoro Ardy Nugroho, Christophe Dujardin, Liang Jie Wong, Muhammad Danang Birowosuto
{"title":"Scaling Up Purcell-Enhanced Self-Assembled Nanoplasmonic Perovskite Scintillators into the Bulk Regime","authors":"Michal Makowski, Wenzheng Ye, Dominik Kowal, Francesco Maddalena, Somnath Mahato, Yudhistira Tirtayasri Amrillah, Weronika Zajac, Marcin Eugeniusz Witkowski, Konrad Jacek Drozdowski, Nathaniel, Cuong Dang, Joanna Cybinska, Winicjusz Drozdowski, Ferry Anggoro Ardy Nugroho, Christophe Dujardin, Liang Jie Wong, Muhammad Danang Birowosuto","doi":"10.1002/adma.202417874","DOIUrl":null,"url":null,"abstract":"Scintillators convert high-energy radiation into detectable photons and play a crucial role in medical imaging and security applications. The enhancement of scintillator performance through nanophotonics and nanoplasmonics, specifically using the Purcell effect, has shown promise but has so far been limited to ultrathin scintillator films because of the localized nature of this effect. This study introduces a method to expand the application of nanoplasmonic scintillators to the bulk regime. By integrating 100-nm-sized plasmonic spheroid and cuboid nanoparticles with perovskite scintillator nanocrystals, nanoplasmonic scintillators are enabled to function effectively within bulk-scale devices. Power and decay rate enhancements of up to (3.20 ± 0.20) and (4.20 ± 0.31) folds are experimentally demonstrated for plasmonic spheroid and cuboid nanoparticles, respectively, in a 5-mm thick CsPbBr<sub>3</sub> nanocrystal-polymer scintillator at RT. Theoretical modeling also predicts similar enhancements of up to (2.26 ± 0.31) and (3.02 ± 0.69) folds for the same nanoparticle shapes and dimensions. Moreover, a (2.07 ± 0.39) fold increase in light yield under <sup>241</sup>Am γ-excitation is demonstrated. These findings provide a viable pathway for utilizing nanoplasmonics to enhance bulk scintillator devices, advancing radiation detection technology.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"141 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417874","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Scintillators convert high-energy radiation into detectable photons and play a crucial role in medical imaging and security applications. The enhancement of scintillator performance through nanophotonics and nanoplasmonics, specifically using the Purcell effect, has shown promise but has so far been limited to ultrathin scintillator films because of the localized nature of this effect. This study introduces a method to expand the application of nanoplasmonic scintillators to the bulk regime. By integrating 100-nm-sized plasmonic spheroid and cuboid nanoparticles with perovskite scintillator nanocrystals, nanoplasmonic scintillators are enabled to function effectively within bulk-scale devices. Power and decay rate enhancements of up to (3.20 ± 0.20) and (4.20 ± 0.31) folds are experimentally demonstrated for plasmonic spheroid and cuboid nanoparticles, respectively, in a 5-mm thick CsPbBr3 nanocrystal-polymer scintillator at RT. Theoretical modeling also predicts similar enhancements of up to (2.26 ± 0.31) and (3.02 ± 0.69) folds for the same nanoparticle shapes and dimensions. Moreover, a (2.07 ± 0.39) fold increase in light yield under 241Am γ-excitation is demonstrated. These findings provide a viable pathway for utilizing nanoplasmonics to enhance bulk scintillator devices, advancing radiation detection technology.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.