Scaling Up Purcell-Enhanced Self-Assembled Nanoplasmonic Perovskite Scintillators into the Bulk Regime

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Michal Makowski, Wenzheng Ye, Dominik Kowal, Francesco Maddalena, Somnath Mahato, Yudhistira Tirtayasri Amrillah, Weronika Zajac, Marcin Eugeniusz Witkowski, Konrad Jacek Drozdowski, Nathaniel, Cuong Dang, Joanna Cybinska, Winicjusz Drozdowski, Ferry Anggoro Ardy Nugroho, Christophe Dujardin, Liang Jie Wong, Muhammad Danang Birowosuto
{"title":"Scaling Up Purcell-Enhanced Self-Assembled Nanoplasmonic Perovskite Scintillators into the Bulk Regime","authors":"Michal Makowski, Wenzheng Ye, Dominik Kowal, Francesco Maddalena, Somnath Mahato, Yudhistira Tirtayasri Amrillah, Weronika Zajac, Marcin Eugeniusz Witkowski, Konrad Jacek Drozdowski, Nathaniel, Cuong Dang, Joanna Cybinska, Winicjusz Drozdowski, Ferry Anggoro Ardy Nugroho, Christophe Dujardin, Liang Jie Wong, Muhammad Danang Birowosuto","doi":"10.1002/adma.202417874","DOIUrl":null,"url":null,"abstract":"Scintillators convert high-energy radiation into detectable photons and play a crucial role in medical imaging and security applications. The enhancement of scintillator performance through nanophotonics and nanoplasmonics, specifically using the Purcell effect, has shown promise but has so far been limited to ultrathin scintillator films because of the localized nature of this effect. This study introduces a method to expand the application of nanoplasmonic scintillators to the bulk regime. By integrating 100-nm-sized plasmonic spheroid and cuboid nanoparticles with perovskite scintillator nanocrystals, nanoplasmonic scintillators are enabled to function effectively within bulk-scale devices. Power and decay rate enhancements of up to (3.20 ± 0.20) and (4.20 ± 0.31) folds are experimentally demonstrated for plasmonic spheroid and cuboid nanoparticles, respectively, in a 5-mm thick CsPbBr<sub>3</sub> nanocrystal-polymer scintillator at RT. Theoretical modeling also predicts similar enhancements of up to (2.26 ± 0.31) and (3.02 ± 0.69) folds for the same nanoparticle shapes and dimensions. Moreover, a (2.07 ± 0.39) fold increase in light yield under <sup>241</sup>Am γ-excitation is demonstrated. These findings provide a viable pathway for utilizing nanoplasmonics to enhance bulk scintillator devices, advancing radiation detection technology.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"141 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417874","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Scintillators convert high-energy radiation into detectable photons and play a crucial role in medical imaging and security applications. The enhancement of scintillator performance through nanophotonics and nanoplasmonics, specifically using the Purcell effect, has shown promise but has so far been limited to ultrathin scintillator films because of the localized nature of this effect. This study introduces a method to expand the application of nanoplasmonic scintillators to the bulk regime. By integrating 100-nm-sized plasmonic spheroid and cuboid nanoparticles with perovskite scintillator nanocrystals, nanoplasmonic scintillators are enabled to function effectively within bulk-scale devices. Power and decay rate enhancements of up to (3.20 ± 0.20) and (4.20 ± 0.31) folds are experimentally demonstrated for plasmonic spheroid and cuboid nanoparticles, respectively, in a 5-mm thick CsPbBr3 nanocrystal-polymer scintillator at RT. Theoretical modeling also predicts similar enhancements of up to (2.26 ± 0.31) and (3.02 ± 0.69) folds for the same nanoparticle shapes and dimensions. Moreover, a (2.07 ± 0.39) fold increase in light yield under 241Am γ-excitation is demonstrated. These findings provide a viable pathway for utilizing nanoplasmonics to enhance bulk scintillator devices, advancing radiation detection technology.

Abstract Image

放大purcell增强的自组装纳米等离子体钙钛矿闪烁体
闪烁体将高能辐射转化为可探测的光子,在医学成像和安全应用中发挥着至关重要的作用。通过纳米光子学和纳米等离子体学来增强闪烁体的性能,特别是利用Purcell效应,已经显示出了希望,但由于这种效应的局域性,迄今为止仅限于超薄闪烁体薄膜。本研究介绍了一种将纳米等离子体闪烁体扩展到体态的方法。通过将100纳米尺寸的等离子体球形和长方体纳米颗粒与钙钛矿闪烁体纳米晶体相结合,纳米等离子体闪烁体能够在大规模器件中有效地发挥作用。实验证明,在5毫米厚的CsPbBr3纳米晶体聚合物闪烁体中,等离子体椭球体和长方体纳米粒子的功率和衰减率分别提高了(3.20±0.20)和(4.20±0.31)倍。理论模型也预测,对于相同的纳米粒子形状和尺寸,功率和衰减率分别提高了(2.26±0.31)和(3.02±0.69)倍。此外,在241Am γ-激发下,产光率提高了(2.07±0.39)倍。这些发现为利用纳米等离子体增强体闪烁体器件,推进辐射探测技术提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信