Estimation of Ammonia Emissions over China Using IASI Satellite-Derived Surface Observations.

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jianan Chen,Xiaohui Du,Xuejun Liu,Wen Xu,Maarten Krol
{"title":"Estimation of Ammonia Emissions over China Using IASI Satellite-Derived Surface Observations.","authors":"Jianan Chen,Xiaohui Du,Xuejun Liu,Wen Xu,Maarten Krol","doi":"10.1021/acs.est.4c10878","DOIUrl":null,"url":null,"abstract":"An accurate ammonia (NH3) emission inventory is crucial for policymakers developing air pollution mitigation strategies. Both satellite observations and bottom-up estimates identify significant NH3 emission hotspots in China. However, bottom-up NH3 emission inventories are highly uncertain due to the lack of localized emission factors, while large and uncertain errors in IASI satellite NH3 columns have hindered their direct application in top-down emission inversion methods. In this study, we perform a top-down optimization of monthly NH3 emissions over China using IASI-derived surface NH3 concentrations with well-evaluated error estimates, combined with the CAMx model at a 36 km resolution. Our posterior NH3 emissions for 2020 (12.3 [10.9-13.6] Tg N yr-1) are significantly higher than prior estimates from the MEIC inventory (7.6 Tg N yr-1), which primarily underestimates emissions during the warm months in hotspot areas (e.g., NCP and MLYR). We employ multiple approaches to comprehensively evaluate our inversion results. Our study highlights that error estimates for low-value observations are a particularly critical factor in the inversion setup, significantly influencing the reliability of emission optimization.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"30 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10878","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate ammonia (NH3) emission inventory is crucial for policymakers developing air pollution mitigation strategies. Both satellite observations and bottom-up estimates identify significant NH3 emission hotspots in China. However, bottom-up NH3 emission inventories are highly uncertain due to the lack of localized emission factors, while large and uncertain errors in IASI satellite NH3 columns have hindered their direct application in top-down emission inversion methods. In this study, we perform a top-down optimization of monthly NH3 emissions over China using IASI-derived surface NH3 concentrations with well-evaluated error estimates, combined with the CAMx model at a 36 km resolution. Our posterior NH3 emissions for 2020 (12.3 [10.9-13.6] Tg N yr-1) are significantly higher than prior estimates from the MEIC inventory (7.6 Tg N yr-1), which primarily underestimates emissions during the warm months in hotspot areas (e.g., NCP and MLYR). We employ multiple approaches to comprehensively evaluate our inversion results. Our study highlights that error estimates for low-value observations are a particularly critical factor in the inversion setup, significantly influencing the reliability of emission optimization.
利用IASI卫星地面观测估算中国上空氨排放。
准确的氨(NH3)排放清单对于决策者制定空气污染缓解战略至关重要。卫星观测和自下而上估算都确定了中国NH3排放的重要热点。然而,由于缺乏局域化的排放因子,自下而上的NH3排放清单具有高度的不确定性,而IASI卫星NH3列的较大不确定性误差阻碍了其在自上而下排放反演方法中的直接应用。在这项研究中,我们使用iiasi导出的表面NH3浓度,并结合CAMx模型在36公里分辨率下进行了良好的误差估计,对中国每月NH3排放进行了自上而下的优化。我们的2020年NH3后验排放量(12.3 [10.9-13.6]Tg N -1)显著高于MEIC清单的先前估计值(7.6 Tg N -1),这主要低估了热点地区(如NCP和MLYR)温暖月份的排放量。我们采用多种方法来综合评价我们的反演结果。我们的研究强调,在反演设置中,低值观测值的误差估计是一个特别关键的因素,它显著影响着发射优化的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信