{"title":"Accurate Prediction of Open-Circuit Voltages of Lithium-Ion Batteries via Delta Learning.","authors":"Wai Yuet Chiu,Chongzhi Zhang,Rongzhi Gao,Ziyang Hu,GuanHua Chen","doi":"10.1021/acs.jctc.5c00168","DOIUrl":null,"url":null,"abstract":"Accurate prediction of lithium-ion battery capacity before material synthesis is crucial for accelerating battery material discovery. The capacity can be theoretically determined by integrating open-circuit voltage vs state of charge (OCV-SoC) curves of electrode materials. OCV-SoC curves are traditionally computed using first-principles methods, either through geometry optimization (GO) with density functional theory (DFT) or molecular dynamics (MD) simulations of lithiation/delithiation processes using DFT or force fields. While MD simulations incorporate temperature effects that GO lacks, even DFT-based MD simulated OCV-SoC curves show systematic deviations from experimental results due to inherent approximations in DFT functionals. In this study, we performed MD simulations on 43 cathode materials to obtain their OCV-SoC curves. Initial results showed only moderate agreement with experimental data, yielding a coefficient of determination (R2) of 0.249 and a mean absolute error (MAE) of 1.561 V. Considering the scarcity of data, we implemented a delta learning approach to calibrate the MD results without substantial computational overhead, achieving an improved R2 of 0.933 and an MAE of 0.131 V on the testing set. This calibration method significantly enhanced the accuracy of energy density predictions, reducing the MAE from 106.0 to 10.7 Wh/kg. We also developed an automated delta learning platform to make this approach accessible to researchers without machine learning expertise.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"5 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of lithium-ion battery capacity before material synthesis is crucial for accelerating battery material discovery. The capacity can be theoretically determined by integrating open-circuit voltage vs state of charge (OCV-SoC) curves of electrode materials. OCV-SoC curves are traditionally computed using first-principles methods, either through geometry optimization (GO) with density functional theory (DFT) or molecular dynamics (MD) simulations of lithiation/delithiation processes using DFT or force fields. While MD simulations incorporate temperature effects that GO lacks, even DFT-based MD simulated OCV-SoC curves show systematic deviations from experimental results due to inherent approximations in DFT functionals. In this study, we performed MD simulations on 43 cathode materials to obtain their OCV-SoC curves. Initial results showed only moderate agreement with experimental data, yielding a coefficient of determination (R2) of 0.249 and a mean absolute error (MAE) of 1.561 V. Considering the scarcity of data, we implemented a delta learning approach to calibrate the MD results without substantial computational overhead, achieving an improved R2 of 0.933 and an MAE of 0.131 V on the testing set. This calibration method significantly enhanced the accuracy of energy density predictions, reducing the MAE from 106.0 to 10.7 Wh/kg. We also developed an automated delta learning platform to make this approach accessible to researchers without machine learning expertise.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.