Philippe Bich,Andriy Enttsel,Luciano Prono,Alex Marchioni,Fabio Pareschi,Mauro Mangia,Gianluca Setti,Riccardo Rovatti
{"title":"On the Universal Approximation Properties of Deep Neural Networks Using MAM Neurons.","authors":"Philippe Bich,Andriy Enttsel,Luciano Prono,Alex Marchioni,Fabio Pareschi,Mauro Mangia,Gianluca Setti,Riccardo Rovatti","doi":"10.1109/tpami.2025.3570545","DOIUrl":null,"url":null,"abstract":"As neural networks are trained to perform tasks of increasing complexity, their size increases, which presents several challenges in their deployment on devices with limited resources. To cope with this, a recently proposed approach hinges on substituting the classical Multiply-and-ACcumulate (MAC) neurons in the hidden layers with other neurons called Multiply-And-Max/min (MAM) whose selective behavior helps identify important interconnections, thus allowing aggressive pruning of the others. Hybrid MAM&MAC structures promise a 10x or even 100x reduction in their memory footprint compared to what can be obtained by pruning MAC-only structures. However, a cornerstone of maintaining this promise is the assumption that MAC&MAM architectures have the same expressive power as MAC-only ones. To concretize such a cornerstone, we take here a step in the theoretical characterization of the capabilities of mixed MAM&MAC networks. We prove, with two theorems, that two hidden MAM layers followed by a MAC neuron with possibly a normalization stage is a universal approximator.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"124 1","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2025.3570545","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As neural networks are trained to perform tasks of increasing complexity, their size increases, which presents several challenges in their deployment on devices with limited resources. To cope with this, a recently proposed approach hinges on substituting the classical Multiply-and-ACcumulate (MAC) neurons in the hidden layers with other neurons called Multiply-And-Max/min (MAM) whose selective behavior helps identify important interconnections, thus allowing aggressive pruning of the others. Hybrid MAM&MAC structures promise a 10x or even 100x reduction in their memory footprint compared to what can be obtained by pruning MAC-only structures. However, a cornerstone of maintaining this promise is the assumption that MAC&MAM architectures have the same expressive power as MAC-only ones. To concretize such a cornerstone, we take here a step in the theoretical characterization of the capabilities of mixed MAM&MAC networks. We prove, with two theorems, that two hidden MAM layers followed by a MAC neuron with possibly a normalization stage is a universal approximator.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.