Xiang Zeng,Shengwu Xiong,Jinming Xu,Guangxing Du,Yi Rong
{"title":"Uncertainty Co-estimator for Improving Semi-Supervised Medical Image Segmentation.","authors":"Xiang Zeng,Shengwu Xiong,Jinming Xu,Guangxing Du,Yi Rong","doi":"10.1109/tmi.2025.3570310","DOIUrl":null,"url":null,"abstract":"Recently, combining the strategy of consistency regularization with uncertainty estimation has shown promising performance on semi-supervised medical image segmentation tasks. However, most existing methods estimate the uncertainty solely based on the outputs of a single neural network, which results in imprecise uncertainty estimations and eventually degrades the segmentation performance. In this paper, we propose a novel Uncertainty Co-estimator (UnCo) framework to deal with this problem. Inspired by the co-training technique, UnCo establishes two different mean-teacher modules (i.e., two pairs of teacher and student models), and estimates three types of uncertainty from the multi-source predictions generated by these models. Through combining these uncertainties, their differences will help to filter out incorrect noise in each estimate, thus allowing the final fused uncertainty maps to be more accurate. These resulting maps are then used to enhance a cross-consistency regularization imposed between the two modules. In addition, UnCo also designs an internal consistency regularization within each module, so that the student models can aggregate diverse feature information from both modules, thus promoting the semi-supervised segmentation performance. Finally, an adversarial constraint is introduced to maintain the model diversity. Experimental results on four medical image datasets indicate that UnCo can achieve new state-of-the-art performance on both 2D and 3D semi-supervised segmentation tasks. The source code will be available at https://github.com/z1010x/UnCo.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"28 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3570310","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, combining the strategy of consistency regularization with uncertainty estimation has shown promising performance on semi-supervised medical image segmentation tasks. However, most existing methods estimate the uncertainty solely based on the outputs of a single neural network, which results in imprecise uncertainty estimations and eventually degrades the segmentation performance. In this paper, we propose a novel Uncertainty Co-estimator (UnCo) framework to deal with this problem. Inspired by the co-training technique, UnCo establishes two different mean-teacher modules (i.e., two pairs of teacher and student models), and estimates three types of uncertainty from the multi-source predictions generated by these models. Through combining these uncertainties, their differences will help to filter out incorrect noise in each estimate, thus allowing the final fused uncertainty maps to be more accurate. These resulting maps are then used to enhance a cross-consistency regularization imposed between the two modules. In addition, UnCo also designs an internal consistency regularization within each module, so that the student models can aggregate diverse feature information from both modules, thus promoting the semi-supervised segmentation performance. Finally, an adversarial constraint is introduced to maintain the model diversity. Experimental results on four medical image datasets indicate that UnCo can achieve new state-of-the-art performance on both 2D and 3D semi-supervised segmentation tasks. The source code will be available at https://github.com/z1010x/UnCo.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.