Highest Solar-to-Hydrogen Conversion Efficiency in Cu2ZnSnS4 Photocathodes and Its Directly Unbiased Solar Seawater Splitting

IF 26.6 1区 材料科学 Q1 Engineering
Muhammad Abbas, Shuo Chen, Zhidong Li, Muhammad Ishaq, Zhuanghao Zheng, Juguang Hu, Zhenghua Su, Yanbo Li, Liming Ding, Guangxing Liang
{"title":"Highest Solar-to-Hydrogen Conversion Efficiency in Cu2ZnSnS4 Photocathodes and Its Directly Unbiased Solar Seawater Splitting","authors":"Muhammad Abbas,&nbsp;Shuo Chen,&nbsp;Zhidong Li,&nbsp;Muhammad Ishaq,&nbsp;Zhuanghao Zheng,&nbsp;Juguang Hu,&nbsp;Zhenghua Su,&nbsp;Yanbo Li,&nbsp;Liming Ding,&nbsp;Guangxing Liang","doi":"10.1007/s40820-025-01755-8","DOIUrl":null,"url":null,"abstract":"<p>Despite being an excellent candidate for a photocathode, Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) performance is limited by suboptimal bulk and interfacial charge carrier dynamics. In this work, we introduce a facile and versatile CZTS precursor seed layer engineering technique, which significantly enhances crystal growth and mitigates detrimental defects in the post-sulfurized CZTS light-absorbing films. This effective optimization of defects and charge carrier dynamics results in a highly efficient CZTS/CdS/TiO<sub>2</sub>/Pt thin-film photocathode, achieving a record half-cell solar-to-hydrogen (HC-STH) conversion efficiency of 9.91%. Additionally, the photocathode exhibits a highest photocurrent density (<i>J</i><sub>ph</sub>) of 29.44 mA cm<sup>−2</sup> (at 0 <i>V</i><sub>RHE</sub>) and favorable onset potential (<i>V</i><sub>on</sub>) of 0.73 <i>V</i><sub>RHE</sub>. Furthermore, our CTZS photocathode demonstrates a remarkable <i>J</i><sub>ph</sub> of 16.54 mA cm<sup>−2</sup> and HC-STH efficiency of 2.56% in natural seawater, followed by an impressive unbiased STH efficiency of 2.20% in a CZTS-BiVO<sub>4</sub> tandem cell. The scalability of this approach is underscored by the successful fabrication of a 4 × 4 cm<sup>2</sup> module, highlighting its significant potential for practical, unbiased in situ solar seawater splitting applications.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01755-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01755-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Despite being an excellent candidate for a photocathode, Cu2ZnSnS4 (CZTS) performance is limited by suboptimal bulk and interfacial charge carrier dynamics. In this work, we introduce a facile and versatile CZTS precursor seed layer engineering technique, which significantly enhances crystal growth and mitigates detrimental defects in the post-sulfurized CZTS light-absorbing films. This effective optimization of defects and charge carrier dynamics results in a highly efficient CZTS/CdS/TiO2/Pt thin-film photocathode, achieving a record half-cell solar-to-hydrogen (HC-STH) conversion efficiency of 9.91%. Additionally, the photocathode exhibits a highest photocurrent density (Jph) of 29.44 mA cm−2 (at 0 VRHE) and favorable onset potential (Von) of 0.73 VRHE. Furthermore, our CTZS photocathode demonstrates a remarkable Jph of 16.54 mA cm−2 and HC-STH efficiency of 2.56% in natural seawater, followed by an impressive unbiased STH efficiency of 2.20% in a CZTS-BiVO4 tandem cell. The scalability of this approach is underscored by the successful fabrication of a 4 × 4 cm2 module, highlighting its significant potential for practical, unbiased in situ solar seawater splitting applications.

Cu2ZnSnS4光电阴极的最高太阳能-氢转换效率及其直接无偏太阳能-海水分裂。
尽管Cu2ZnSnS4 (CZTS)是光电阴极的优秀候选者,但其性能受到非最佳体和界面载流子动力学的限制。在这项工作中,我们介绍了一种简单而通用的CZTS前驱体种子层工程技术,该技术显著提高了晶体生长,减轻了后硫化CZTS吸光膜中的有害缺陷。这种缺陷和载流子动力学的有效优化导致了高效的CZTS/CdS/TiO2/Pt薄膜光电阴极,实现了创纪录的9.91%的半电池太阳能到氢(HC-STH)转换效率。此外,光电阴极的最高光电流密度(Jph)为29.44 mA cm-2 (0 VRHE),有利的起始电位(Von)为0.73 VRHE。此外,我们的CTZS光电阴极在自然海水中的Jph为16.54 mA cm-2, HC-STH效率为2.56%,其次是cts - bivo4串联电池的无偏STH效率为2.20%。这种方法的可扩展性通过一个4 × 4 cm2模块的成功制造而得到强调,突出了其在实际、无偏差的原位太阳能海水分裂应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信