Jennifer H Richens, Mariia Dmitrieva, Helen L Zenner, Nadine Muschalik, Richard Butler, Jade Glashauser, Carolina Camelo, Stefan Luschnig, Sean Munro, Jens Rittscher, Daniel St Johnston
{"title":"MSP-tracker: A versatile vesicle tracking software tool used to reveal the spatial control of polarized secretion in Drosophila epithelial cells.","authors":"Jennifer H Richens, Mariia Dmitrieva, Helen L Zenner, Nadine Muschalik, Richard Butler, Jade Glashauser, Carolina Camelo, Stefan Luschnig, Sean Munro, Jens Rittscher, Daniel St Johnston","doi":"10.1371/journal.pbio.3003099","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how specific secretory cargoes are targeted to distinct domains of the plasma membrane in epithelial cells requires analyzing the trafficking of post-Golgi vesicles to their sites of secretion. We used the RUSH (retention using selective hooks) system to synchronously release an apical cargo, Cadherin 99C (Cad99C), and a basolateral cargo, the ECM protein Nidogen, from the endoplasmic reticulum and followed their movements to the plasma membrane. We also developed an interactive vesicle tracking framework, MSP-tracker and viewer, that exploits developments in computer vision and deep learning to determine vesicle trajectories in a noisy environment without the need for extensive training data. MSP-tracker outperformed other tracking software in detecting and tracking post-Golgi vesicles, revealing that Cad99c vesicles predominantly move apically with a mean speed of 1.1µm/sec. This is reduced to 0.85 µm/sec by a dominant slow dynein mutant, demonstrating that dynein transports Cad99C vesicles to the apical cortex. Furthermore, both the dynein mutant and microtubule depolymerization cause lateral Cad99C secretion. Thus, microtubule organization plays a central role in targeting apical secretion, suggesting that Drosophila does not have distinct apical versus basolateral vesicle fusion machinery. Nidogen vesicles undergo planar-polarized transport to the leading edge of follicle cells as they migrate over the ECM, whereas most Collagen is secreted at trailing edges. The follicle cells therefore bias secretion of different ECM components to opposite sides of the cell, revealing that the secretory pathway is more spatially organized than previously thought.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 4","pages":"e3003099"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003099","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how specific secretory cargoes are targeted to distinct domains of the plasma membrane in epithelial cells requires analyzing the trafficking of post-Golgi vesicles to their sites of secretion. We used the RUSH (retention using selective hooks) system to synchronously release an apical cargo, Cadherin 99C (Cad99C), and a basolateral cargo, the ECM protein Nidogen, from the endoplasmic reticulum and followed their movements to the plasma membrane. We also developed an interactive vesicle tracking framework, MSP-tracker and viewer, that exploits developments in computer vision and deep learning to determine vesicle trajectories in a noisy environment without the need for extensive training data. MSP-tracker outperformed other tracking software in detecting and tracking post-Golgi vesicles, revealing that Cad99c vesicles predominantly move apically with a mean speed of 1.1µm/sec. This is reduced to 0.85 µm/sec by a dominant slow dynein mutant, demonstrating that dynein transports Cad99C vesicles to the apical cortex. Furthermore, both the dynein mutant and microtubule depolymerization cause lateral Cad99C secretion. Thus, microtubule organization plays a central role in targeting apical secretion, suggesting that Drosophila does not have distinct apical versus basolateral vesicle fusion machinery. Nidogen vesicles undergo planar-polarized transport to the leading edge of follicle cells as they migrate over the ECM, whereas most Collagen is secreted at trailing edges. The follicle cells therefore bias secretion of different ECM components to opposite sides of the cell, revealing that the secretory pathway is more spatially organized than previously thought.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.