Venkatesh Mani, Winston T Chu, Hee-Jeong Yang, C Paul Morris, Joseph Laux, Russell Byrum, Kurt Cooper, David X Liu, Hui Wang, Cristal Johnson, Kyra Hadley, John G Bernbaum, Randy Hart, Scott M Anthony, Anthony E Marketon, Rebecca Bernbaum-Cutler, Bapi Pahar, Gabriella Worwa, Jens H Kuhn, Ian Crozier, Claudia Calcagno, Eric Gale
{"title":"Reactive oxygen species-related oxidative changes are associated with splenic lymphocyte depletion in Ebola virus infection.","authors":"Venkatesh Mani, Winston T Chu, Hee-Jeong Yang, C Paul Morris, Joseph Laux, Russell Byrum, Kurt Cooper, David X Liu, Hui Wang, Cristal Johnson, Kyra Hadley, John G Bernbaum, Randy Hart, Scott M Anthony, Anthony E Marketon, Rebecca Bernbaum-Cutler, Bapi Pahar, Gabriella Worwa, Jens H Kuhn, Ian Crozier, Claudia Calcagno, Eric Gale","doi":"10.1038/s44303-025-00079-x","DOIUrl":null,"url":null,"abstract":"<p><p>The dysregulated production of reactive oxygen species (ROS) during viral infections may lead to immune cell death and ineffective host responses. ROS dynamics have been under-investigated in severe Ebola virus disease (EVD), a condition in which hyperinflammation and excessive immune cell death are well described but poorly understood. Through ex vivo immunohistochemistry and in vivo ROS-sensitive magnetic resonance imaging (MRI) we demonstrate significant ROS-related oxidative changes in the spleens of domestic ferrets exposed to Ebola virus (EBOV). By immunohistochemistry or MRI, detection of splenic ROS was inversely correlated with the number of CD4<sup>+</sup>/CD8<sup>+</sup> T lymphocytes and apoptotic CD8<sup>+</sup> lymphocytes, but detection was positively correlated with the frequency of apoptotic CD4<sup>+</sup> cells and the number and frequency of apoptotic B lymphocytes. These results suggest that ROS-induced apoptosis may contribute to the loss of splenic CD4<sup>+</sup> T lymphocytes in EBOV-exposed ferrets and warrant further investigation of the role of ROS in severe EVD.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00079-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dysregulated production of reactive oxygen species (ROS) during viral infections may lead to immune cell death and ineffective host responses. ROS dynamics have been under-investigated in severe Ebola virus disease (EVD), a condition in which hyperinflammation and excessive immune cell death are well described but poorly understood. Through ex vivo immunohistochemistry and in vivo ROS-sensitive magnetic resonance imaging (MRI) we demonstrate significant ROS-related oxidative changes in the spleens of domestic ferrets exposed to Ebola virus (EBOV). By immunohistochemistry or MRI, detection of splenic ROS was inversely correlated with the number of CD4+/CD8+ T lymphocytes and apoptotic CD8+ lymphocytes, but detection was positively correlated with the frequency of apoptotic CD4+ cells and the number and frequency of apoptotic B lymphocytes. These results suggest that ROS-induced apoptosis may contribute to the loss of splenic CD4+ T lymphocytes in EBOV-exposed ferrets and warrant further investigation of the role of ROS in severe EVD.