Brain-Computer Interface-controlled Upper Limb Robotic System for Enhancing Daily Activities in Stroke Patients.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Hyunji Kim, Won Kee Chang, Won-Seok Kim, Ji-Hee Jang, Yoon-Ah Lee, Mareike Vermehren, Niels Peekhaus, Annalisa Colucci, Cornelius Angerhöfer, Volker Hömberg, Surjo R Soekadar, Nam-Jong Paik
{"title":"Brain-Computer Interface-controlled Upper Limb Robotic System for Enhancing Daily Activities in Stroke Patients.","authors":"Hyunji Kim, Won Kee Chang, Won-Seok Kim, Ji-Hee Jang, Yoon-Ah Lee, Mareike Vermehren, Niels Peekhaus, Annalisa Colucci, Cornelius Angerhöfer, Volker Hömberg, Surjo R Soekadar, Nam-Jong Paik","doi":"10.3791/67601","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a Brain-Computer Interface (BCI)-controlled upper limb assistive robot for post-stroke rehabilitation. The system utilizes electroencephalogram (EEG) and electrooculogram (EOG) signals to help users assist upper limb function in everyday tasks while interacting with a robotic hand. We evaluated the effectiveness of this BCI-robot system using the Berlin Bimanual Test for Stroke (BeBiTS), a set of 10 daily living tasks involving both hands. Eight stroke patients participated in this study, but only four participants could adapt to the BCI robot system training and perform the postBeBiTS. Notably, when the preBeBiTS score for each item was four or less, the BCI robot system showed greater assistive effectiveness in the postBeBiTS assessment. Furthermore, our current robotic hand does not assist with arm and wrist functions, limiting its use in tasks requiring complex hand movements. More participants are required to confirm the training effectiveness of the BCI-robot system, and future research should consider using robots that can assist with a broader range of upper limb functions. This study aimed to determine the BCI-robot system's ability to assist patients in performing daily living activities.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 218","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67601","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a Brain-Computer Interface (BCI)-controlled upper limb assistive robot for post-stroke rehabilitation. The system utilizes electroencephalogram (EEG) and electrooculogram (EOG) signals to help users assist upper limb function in everyday tasks while interacting with a robotic hand. We evaluated the effectiveness of this BCI-robot system using the Berlin Bimanual Test for Stroke (BeBiTS), a set of 10 daily living tasks involving both hands. Eight stroke patients participated in this study, but only four participants could adapt to the BCI robot system training and perform the postBeBiTS. Notably, when the preBeBiTS score for each item was four or less, the BCI robot system showed greater assistive effectiveness in the postBeBiTS assessment. Furthermore, our current robotic hand does not assist with arm and wrist functions, limiting its use in tasks requiring complex hand movements. More participants are required to confirm the training effectiveness of the BCI-robot system, and future research should consider using robots that can assist with a broader range of upper limb functions. This study aimed to determine the BCI-robot system's ability to assist patients in performing daily living activities.

脑机接口控制上肢机器人系统增强脑卒中患者的日常活动。
本研究介绍一种脑机接口(BCI)控制的用于脑卒中后康复的上肢辅助机器人。该系统利用脑电图(EEG)和眼电图(EOG)信号来帮助用户在与机器人手交互的同时协助上肢完成日常任务。我们使用柏林双手卒中测试(BeBiTS)来评估bci -机器人系统的有效性,BeBiTS是一组涉及双手的10项日常生活任务。8名脑卒中患者参与了本研究,但只有4名参与者能够适应脑机接口机器人系统训练并执行后bebits。值得注意的是,当每个项目的前bebits得分为4分或更低时,BCI机器人系统在后bebits评估中显示出更大的辅助效果。此外,我们目前的机器人手不能辅助手臂和手腕的功能,限制了它在需要复杂手部运动的任务中的使用。需要更多的参与者来证实bci -机器人系统的训练有效性,未来的研究应考虑使用能够辅助更广泛的上肢功能的机器人。本研究旨在确定脑机接口-机器人系统协助患者进行日常生活活动的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信